gdkchan 2f16491712
Get rid of Reflection.Emit dependency on CPU and Shader projects (#1626)
* Get rid of Reflection.Emit dependency on CPU and Shader projects

* Remove useless private sets

* Missed those due to the alignment
2020-10-21 09:13:44 -03:00

350 lines
12 KiB
C#

using ARMeilleure.Decoders.Optimizations;
using ARMeilleure.Instructions;
using ARMeilleure.Memory;
using ARMeilleure.State;
using System;
using System.Collections.Generic;
using System.Diagnostics;
namespace ARMeilleure.Decoders
{
static class Decoder
{
// We define a limit on the number of instructions that a function may have,
// this prevents functions being potentially too large, which would
// take too long to compile and use too much memory.
private const int MaxInstsPerFunction = 2500;
// For lower code quality translation, we set a lower limit since we're blocking execution.
private const int MaxInstsPerFunctionLowCq = 500;
public static Block[] Decode(IMemoryManager memory, ulong address, ExecutionMode mode, bool highCq, bool singleBlock)
{
List<Block> blocks = new List<Block>();
Queue<Block> workQueue = new Queue<Block>();
Dictionary<ulong, Block> visited = new Dictionary<ulong, Block>();
int opsCount = 0;
int instructionLimit = highCq ? MaxInstsPerFunction : MaxInstsPerFunctionLowCq;
Block GetBlock(ulong blkAddress)
{
if (!visited.TryGetValue(blkAddress, out Block block))
{
block = new Block(blkAddress);
if ((singleBlock && visited.Count >= 1) || opsCount > instructionLimit || !memory.IsMapped(blkAddress))
{
block.Exit = true;
block.EndAddress = blkAddress;
}
workQueue.Enqueue(block);
visited.Add(blkAddress, block);
}
return block;
}
GetBlock(address);
while (workQueue.TryDequeue(out Block currBlock))
{
// Check if the current block is inside another block.
if (BinarySearch(blocks, currBlock.Address, out int nBlkIndex))
{
Block nBlock = blocks[nBlkIndex];
if (nBlock.Address == currBlock.Address)
{
throw new InvalidOperationException("Found duplicate block address on the list.");
}
currBlock.Exit = false;
nBlock.Split(currBlock);
blocks.Insert(nBlkIndex + 1, currBlock);
continue;
}
if (!currBlock.Exit)
{
// If we have a block after the current one, set the limit address.
ulong limitAddress = ulong.MaxValue;
if (nBlkIndex != blocks.Count)
{
Block nBlock = blocks[nBlkIndex];
int nextIndex = nBlkIndex + 1;
if (nBlock.Address < currBlock.Address && nextIndex < blocks.Count)
{
limitAddress = blocks[nextIndex].Address;
}
else if (nBlock.Address > currBlock.Address)
{
limitAddress = blocks[nBlkIndex].Address;
}
}
FillBlock(memory, mode, currBlock, limitAddress);
opsCount += currBlock.OpCodes.Count;
if (currBlock.OpCodes.Count != 0)
{
// Set child blocks. "Branch" is the block the branch instruction
// points to (when taken), "Next" is the block at the next address,
// executed when the branch is not taken. For Unconditional Branches
// (except BL/BLR that are sub calls) or end of executable, Next is null.
OpCode lastOp = currBlock.GetLastOp();
bool isCall = IsCall(lastOp);
if (lastOp is IOpCodeBImm op && !isCall)
{
currBlock.Branch = GetBlock((ulong)op.Immediate);
}
if (!IsUnconditionalBranch(lastOp) || isCall)
{
currBlock.Next = GetBlock(currBlock.EndAddress);
}
}
}
// Insert the new block on the list (sorted by address).
if (blocks.Count != 0)
{
Block nBlock = blocks[nBlkIndex];
blocks.Insert(nBlkIndex + (nBlock.Address < currBlock.Address ? 1 : 0), currBlock);
}
else
{
blocks.Add(currBlock);
}
}
if (blocks.Count == 1 && blocks[0].OpCodes.Count == 0)
{
Debug.Assert(blocks[0].Exit);
Debug.Assert(blocks[0].Address == blocks[0].EndAddress);
throw new InvalidOperationException($"Decoded a single empty exit block. Entry point = 0x{address:X}.");
}
if (!singleBlock)
{
return TailCallRemover.RunPass(address, blocks);
}
else
{
return blocks.ToArray();
}
}
public static bool BinarySearch(List<Block> blocks, ulong address, out int index)
{
index = 0;
int left = 0;
int right = blocks.Count - 1;
while (left <= right)
{
int size = right - left;
int middle = left + (size >> 1);
Block block = blocks[middle];
index = middle;
if (address >= block.Address && address < block.EndAddress)
{
return true;
}
if (address < block.Address)
{
right = middle - 1;
}
else
{
left = middle + 1;
}
}
return false;
}
private static void FillBlock(
IMemoryManager memory,
ExecutionMode mode,
Block block,
ulong limitAddress)
{
ulong address = block.Address;
OpCode opCode;
do
{
if (address >= limitAddress)
{
break;
}
opCode = DecodeOpCode(memory, address, mode);
block.OpCodes.Add(opCode);
address += (ulong)opCode.OpCodeSizeInBytes;
}
while (!(IsBranch(opCode) || IsException(opCode)));
block.EndAddress = address;
}
private static bool IsBranch(OpCode opCode)
{
return opCode is OpCodeBImm ||
opCode is OpCodeBReg || IsAarch32Branch(opCode);
}
private static bool IsUnconditionalBranch(OpCode opCode)
{
return opCode is OpCodeBImmAl ||
opCode is OpCodeBReg || IsAarch32UnconditionalBranch(opCode);
}
private static bool IsAarch32UnconditionalBranch(OpCode opCode)
{
if (!(opCode is OpCode32 op))
{
return false;
}
// Note: On ARM32, most instructions have conditional execution,
// so there's no "Always" (unconditional) branch like on ARM64.
// We need to check if the condition is "Always" instead.
return IsAarch32Branch(op) && op.Cond >= Condition.Al;
}
private static bool IsAarch32Branch(OpCode opCode)
{
// Note: On ARM32, most ALU operations can write to R15 (PC),
// so we must consider such operations as a branch in potential aswell.
if (opCode is IOpCode32Alu opAlu && opAlu.Rd == RegisterAlias.Aarch32Pc)
{
return true;
}
// Same thing for memory operations. We have the cases where PC is a target
// register (Rt == 15 or (mask & (1 << 15)) != 0), and cases where there is
// a write back to PC (wback == true && Rn == 15), however the later may
// be "undefined" depending on the CPU, so compilers should not produce that.
if (opCode is IOpCode32Mem || opCode is IOpCode32MemMult)
{
int rt, rn;
bool wBack, isLoad;
if (opCode is IOpCode32Mem opMem)
{
rt = opMem.Rt;
rn = opMem.Rn;
wBack = opMem.WBack;
isLoad = opMem.IsLoad;
// For the dual load, we also need to take into account the
// case were Rt2 == 15 (PC).
if (rt == 14 && opMem.Instruction.Name == InstName.Ldrd)
{
rt = RegisterAlias.Aarch32Pc;
}
}
else if (opCode is IOpCode32MemMult opMemMult)
{
const int pcMask = 1 << RegisterAlias.Aarch32Pc;
rt = (opMemMult.RegisterMask & pcMask) != 0 ? RegisterAlias.Aarch32Pc : 0;
rn = opMemMult.Rn;
wBack = opMemMult.PostOffset != 0;
isLoad = opMemMult.IsLoad;
}
else
{
throw new NotImplementedException($"The type \"{opCode.GetType().Name}\" is not implemented on the decoder.");
}
if ((rt == RegisterAlias.Aarch32Pc && isLoad) ||
(rn == RegisterAlias.Aarch32Pc && wBack))
{
return true;
}
}
// Explicit branch instructions.
return opCode is IOpCode32BImm ||
opCode is IOpCode32BReg;
}
private static bool IsCall(OpCode opCode)
{
return opCode.Instruction.Name == InstName.Bl ||
opCode.Instruction.Name == InstName.Blr ||
opCode.Instruction.Name == InstName.Blx;
}
private static bool IsException(OpCode opCode)
{
return opCode.Instruction.Name == InstName.Brk ||
opCode.Instruction.Name == InstName.Svc ||
opCode.Instruction.Name == InstName.Trap ||
opCode.Instruction.Name == InstName.Und;
}
public static OpCode DecodeOpCode(IMemoryManager memory, ulong address, ExecutionMode mode)
{
int opCode = memory.Read<int>(address);
InstDescriptor inst;
OpCodeTable.MakeOp makeOp;
if (mode == ExecutionMode.Aarch64)
{
(inst, makeOp) = OpCodeTable.GetInstA64(opCode);
}
else
{
if (mode == ExecutionMode.Aarch32Arm)
{
(inst, makeOp) = OpCodeTable.GetInstA32(opCode);
}
else /* if (mode == ExecutionMode.Aarch32Thumb) */
{
(inst, makeOp) = OpCodeTable.GetInstT32(opCode);
}
}
if (makeOp != null)
{
return makeOp(inst, address, opCode);
}
else
{
return new OpCode(inst, address, opCode);
}
}
}
}