yuzu-android/src/core/arm/interpreter/arminit.cpp

164 lines
5.8 KiB
C++
Raw Normal View History

/* arminit.c -- ARMulator initialization: ARM6 Instruction Emulator.
Copyright (C) 1994 Advanced RISC Machines Ltd.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include <cstring>
#include "core/mem_map.h"
#include "core/arm/skyeye_common/armdefs.h"
#include "core/arm/skyeye_common/armemu.h"
/***************************************************************************\
* Returns a new instantiation of the ARMulator's state *
\***************************************************************************/
ARMul_State* ARMul_NewState(ARMul_State* state)
{
memset(state, 0, sizeof(ARMul_State));
state->Emulate = RUN;
for (unsigned int i = 0; i < 16; i++) {
state->Reg[i] = 0;
for (unsigned int j = 0; j < 7; j++)
state->RegBank[j][i] = 0;
}
for (unsigned int i = 0; i < 7; i++)
state->Spsr[i] = 0;
state->Mode = USER32MODE;
state->VectorCatch = 0;
state->Aborted = false;
state->Reseted = false;
state->Inted = 3;
state->LastInted = 3;
state->lateabtSig = HIGH;
state->bigendSig = LOW;
return state;
}
/***************************************************************************\
* Call this routine to set ARMulator to model a certain processor *
\***************************************************************************/
void ARMul_SelectProcessor(ARMul_State* state, unsigned properties)
{
state->is_v4 = (properties & (ARM_v4_Prop | ARM_v5_Prop)) != 0;
state->is_v5 = (properties & ARM_v5_Prop) != 0;
state->is_v5e = (properties & ARM_v5e_Prop) != 0;
state->is_v6 = (properties & ARM_v6_Prop) != 0;
state->is_v7 = (properties & ARM_v7_Prop) != 0;
// Only initialse the coprocessor support once we
// know what kind of chip we are dealing with.
ARMul_CoProInit(state);
}
// Resets certain MPCore CP15 values to their ARM-defined reset values.
static void ResetMPCoreCP15Registers(ARMul_State* cpu)
{
// c0
cpu->CP15[CP15(CP15_MAIN_ID)] = 0x410FB024;
cpu->CP15[CP15(CP15_TLB_TYPE)] = 0x00000800;
cpu->CP15[CP15(CP15_PROCESSOR_FEATURE_0)] = 0x00000111;
cpu->CP15[CP15(CP15_PROCESSOR_FEATURE_1)] = 0x00000001;
cpu->CP15[CP15(CP15_DEBUG_FEATURE_0)] = 0x00000002;
cpu->CP15[CP15(CP15_MEMORY_MODEL_FEATURE_0)] = 0x01100103;
cpu->CP15[CP15(CP15_MEMORY_MODEL_FEATURE_1)] = 0x10020302;
cpu->CP15[CP15(CP15_MEMORY_MODEL_FEATURE_2)] = 0x01222000;
cpu->CP15[CP15(CP15_MEMORY_MODEL_FEATURE_3)] = 0x00000000;
cpu->CP15[CP15(CP15_ISA_FEATURE_0)] = 0x00100011;
cpu->CP15[CP15(CP15_ISA_FEATURE_1)] = 0x12002111;
cpu->CP15[CP15(CP15_ISA_FEATURE_2)] = 0x11221011;
cpu->CP15[CP15(CP15_ISA_FEATURE_3)] = 0x01102131;
cpu->CP15[CP15(CP15_ISA_FEATURE_4)] = 0x00000141;
// c1
cpu->CP15[CP15(CP15_CONTROL)] = 0x00054078;
cpu->CP15[CP15(CP15_AUXILIARY_CONTROL)] = 0x0000000F;
cpu->CP15[CP15(CP15_COPROCESSOR_ACCESS_CONTROL)] = 0x00000000;
// c2
cpu->CP15[CP15(CP15_TRANSLATION_BASE_TABLE_0)] = 0x00000000;
cpu->CP15[CP15(CP15_TRANSLATION_BASE_TABLE_1)] = 0x00000000;
cpu->CP15[CP15(CP15_TRANSLATION_BASE_CONTROL)] = 0x00000000;
// c3
cpu->CP15[CP15(CP15_DOMAIN_ACCESS_CONTROL)] = 0x00000000;
// c7
cpu->CP15[CP15(CP15_PHYS_ADDRESS)] = 0x00000000;
// c9
cpu->CP15[CP15(CP15_DATA_CACHE_LOCKDOWN)] = 0xFFFFFFF0;
// c10
cpu->CP15[CP15(CP15_TLB_LOCKDOWN)] = 0x00000000;
cpu->CP15[CP15(CP15_PRIMARY_REGION_REMAP)] = 0x00098AA4;
cpu->CP15[CP15(CP15_NORMAL_REGION_REMAP)] = 0x44E048E0;
// c13
cpu->CP15[CP15(CP15_PID)] = 0x00000000;
cpu->CP15[CP15(CP15_CONTEXT_ID)] = 0x00000000;
cpu->CP15[CP15(CP15_THREAD_UPRW)] = 0x00000000;
cpu->CP15[CP15(CP15_THREAD_URO)] = 0x00000000;
cpu->CP15[CP15(CP15_THREAD_PRW)] = 0x00000000;
// c15
cpu->CP15[CP15(CP15_PERFORMANCE_MONITOR_CONTROL)] = 0x00000000;
cpu->CP15[CP15(CP15_MAIN_TLB_LOCKDOWN_VIRT_ADDRESS)] = 0x00000000;
cpu->CP15[CP15(CP15_MAIN_TLB_LOCKDOWN_PHYS_ADDRESS)] = 0x00000000;
cpu->CP15[CP15(CP15_MAIN_TLB_LOCKDOWN_ATTRIBUTE)] = 0x00000000;
cpu->CP15[CP15(CP15_TLB_DEBUG_CONTROL)] = 0x00000000;
}
/***************************************************************************\
* Call this routine to set up the initial machine state (or perform a RESET *
\***************************************************************************/
void ARMul_Reset(ARMul_State* state)
{
state->NextInstr = 0;
state->Reg[15] = 0;
state->Cpsr = INTBITS | SVC32MODE;
state->Mode = SVC32MODE;
state->Bank = SVCBANK;
FLUSHPIPE;
// Reset CP15
ResetMPCoreCP15Registers(state);
// This is separate from the CP15 register reset function, as
// this isn't an ARM-defined reset value; it's set by the 3DS.
//
// TODO: Whenever TLS is implemented, this should contain
// the address of the 0x200-byte TLS
state->CP15[CP15(CP15_THREAD_URO)] = Memory::KERNEL_MEMORY_VADDR;
state->EndCondition = 0;
state->ErrorCode = 0;
state->NresetSig = HIGH;
state->NfiqSig = HIGH;
state->NirqSig = HIGH;
state->NtransSig = (state->Mode & 3) ? HIGH : LOW;
state->abortSig = LOW;
state->AbortAddr = 1;
state->NumInstrs = 0;
}