yuzu-android/src/core/memory.cpp

863 lines
33 KiB
C++
Raw Normal View History

chore: make yuzu REUSE compliant [REUSE] is a specification that aims at making file copyright information consistent, so that it can be both human and machine readable. It basically requires that all files have a header containing copyright and licensing information. When this isn't possible, like when dealing with binary assets, generated files or embedded third-party dependencies, it is permitted to insert copyright information in the `.reuse/dep5` file. Oh, and it also requires that all the licenses used in the project are present in the `LICENSES` folder, that's why the diff is so huge. This can be done automatically with `reuse download --all`. The `reuse` tool also contains a handy subcommand that analyzes the project and tells whether or not the project is (still) compliant, `reuse lint`. Following REUSE has a few advantages over the current approach: - Copyright information is easy to access for users / downstream - Files like `dist/license.md` do not need to exist anymore, as `.reuse/dep5` is used instead - `reuse lint` makes it easy to ensure that copyright information of files like binary assets / images is always accurate and up to date To add copyright information of files that didn't have it I looked up who committed what and when, for each file. As yuzu contributors do not have to sign a CLA or similar I couldn't assume that copyright ownership was of the "yuzu Emulator Project", so I used the name and/or email of the commit author instead. [REUSE]: https://reuse.software Follow-up to 01cf05bc75b1e47beb08937439f3ed9339e7b254
2022-05-15 02:06:02 +02:00
// SPDX-FileCopyrightText: 2015 Citra Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
2013-09-18 23:52:51 -04:00
#include <algorithm>
2015-09-09 23:23:44 -04:00
#include <cstring>
#include "common/assert.h"
#include "common/atomic_ops.h"
#include "common/cache_management.h"
2015-05-06 04:06:12 -03:00
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/page_table.h"
2020-01-19 01:49:30 +01:00
#include "common/settings.h"
2015-05-06 04:06:12 -03:00
#include "common/swap.h"
#include "core/core.h"
2020-04-08 22:50:46 -04:00
#include "core/device_memory.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process.h"
#include "core/memory.h"
#include "video_core/gpu.h"
2016-04-16 18:57:57 -04:00
namespace Core::Memory {
// Implementation class used to keep the specifics of the memory subsystem hidden
// from outside classes. This also allows modification to the internals of the memory
// subsystem without needing to rebuild all files that make use of the memory interface.
struct Memory::Impl {
explicit Impl(Core::System& system_) : system{system_} {}
void SetCurrentPageTable(Kernel::KProcess& process, u32 core_id) {
2020-04-08 22:50:46 -04:00
current_page_table = &process.PageTable().PageTableImpl();
2020-01-19 01:49:30 +01:00
current_page_table->fastmem_arena = system.DeviceMemory().buffer.VirtualBasePointer();
2020-04-08 22:50:46 -04:00
const std::size_t address_space_width = process.PageTable().GetAddressSpaceWidth();
system.ArmInterface(core_id).PageTableChanged(*current_page_table, address_space_width);
}
2020-04-08 22:50:46 -04:00
void MapMemoryRegion(Common::PageTable& page_table, VAddr base, u64 size, PAddr target) {
ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((base & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", base);
ASSERT_MSG(target >= DramMemoryMap::Base, "Out of bounds target: {:016X}", target);
MapPages(page_table, base / YUZU_PAGESIZE, size / YUZU_PAGESIZE, target,
Common::PageType::Memory);
2020-01-19 01:49:30 +01:00
if (Settings::IsFastmemEnabled()) {
system.DeviceMemory().buffer.Map(base, target - DramMemoryMap::Base, size);
}
}
void UnmapRegion(Common::PageTable& page_table, VAddr base, u64 size) {
ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((base & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", base);
MapPages(page_table, base / YUZU_PAGESIZE, size / YUZU_PAGESIZE, 0,
Common::PageType::Unmapped);
2020-01-19 01:49:30 +01:00
if (Settings::IsFastmemEnabled()) {
system.DeviceMemory().buffer.Unmap(base, size);
}
}
2018-05-02 22:36:51 -04:00
2021-08-05 20:11:14 +00:00
[[nodiscard]] u8* GetPointerFromRasterizerCachedMemory(VAddr vaddr) const {
const PAddr paddr{current_page_table->backing_addr[vaddr >> YUZU_PAGEBITS]};
2020-04-08 22:50:46 -04:00
if (!paddr) {
return {};
}
return system.DeviceMemory().GetPointer<u8>(paddr) + vaddr;
}
[[nodiscard]] u8* GetPointerFromDebugMemory(VAddr vaddr) const {
const PAddr paddr{current_page_table->backing_addr[vaddr >> YUZU_PAGEBITS]};
if (paddr == 0) {
return {};
}
return system.DeviceMemory().GetPointer<u8>(paddr) + vaddr;
}
u8 Read8(const VAddr addr) {
return Read<u8>(addr);
}
u16 Read16(const VAddr addr) {
if ((addr & 1) == 0) {
return Read<u16_le>(addr);
} else {
const u32 a{Read<u8>(addr)};
const u32 b{Read<u8>(addr + sizeof(u8))};
return static_cast<u16>((b << 8) | a);
}
}
u32 Read32(const VAddr addr) {
if ((addr & 3) == 0) {
return Read<u32_le>(addr);
} else {
const u32 a{Read16(addr)};
const u32 b{Read16(addr + sizeof(u16))};
return (b << 16) | a;
}
}
u64 Read64(const VAddr addr) {
if ((addr & 7) == 0) {
return Read<u64_le>(addr);
} else {
const u32 a{Read32(addr)};
const u32 b{Read32(addr + sizeof(u32))};
return (static_cast<u64>(b) << 32) | a;
}
}
void Write8(const VAddr addr, const u8 data) {
Write<u8>(addr, data);
}
void Write16(const VAddr addr, const u16 data) {
if ((addr & 1) == 0) {
Write<u16_le>(addr, data);
} else {
Write<u8>(addr, static_cast<u8>(data));
Write<u8>(addr + sizeof(u8), static_cast<u8>(data >> 8));
}
}
void Write32(const VAddr addr, const u32 data) {
if ((addr & 3) == 0) {
Write<u32_le>(addr, data);
} else {
Write16(addr, static_cast<u16>(data));
Write16(addr + sizeof(u16), static_cast<u16>(data >> 16));
}
}
void Write64(const VAddr addr, const u64 data) {
if ((addr & 7) == 0) {
Write<u64_le>(addr, data);
} else {
Write32(addr, static_cast<u32>(data));
Write32(addr + sizeof(u32), static_cast<u32>(data >> 32));
}
}
bool WriteExclusive8(const VAddr addr, const u8 data, const u8 expected) {
return WriteExclusive<u8>(addr, data, expected);
}
bool WriteExclusive16(const VAddr addr, const u16 data, const u16 expected) {
return WriteExclusive<u16_le>(addr, data, expected);
}
bool WriteExclusive32(const VAddr addr, const u32 data, const u32 expected) {
return WriteExclusive<u32_le>(addr, data, expected);
}
bool WriteExclusive64(const VAddr addr, const u64 data, const u64 expected) {
return WriteExclusive<u64_le>(addr, data, expected);
}
std::string ReadCString(VAddr vaddr, std::size_t max_length) {
std::string string;
string.reserve(max_length);
for (std::size_t i = 0; i < max_length; ++i) {
2021-08-05 20:11:14 +00:00
const char c = Read<s8>(vaddr);
if (c == '\0') {
break;
}
string.push_back(c);
++vaddr;
}
string.shrink_to_fit();
return string;
}
2021-08-05 21:09:08 +00:00
void WalkBlock(const Kernel::KProcess& process, const VAddr addr, const std::size_t size,
2021-08-05 20:11:14 +00:00
auto on_unmapped, auto on_memory, auto on_rasterizer, auto increment) {
2020-04-08 22:50:46 -04:00
const auto& page_table = process.PageTable().PageTableImpl();
std::size_t remaining_size = size;
std::size_t page_index = addr >> YUZU_PAGEBITS;
std::size_t page_offset = addr & YUZU_PAGEMASK;
2021-08-05 20:11:14 +00:00
while (remaining_size) {
const std::size_t copy_amount =
std::min(static_cast<std::size_t>(YUZU_PAGESIZE) - page_offset, remaining_size);
const auto current_vaddr =
static_cast<VAddr>((page_index << YUZU_PAGEBITS) + page_offset);
const auto [pointer, type] = page_table.pointers[page_index].PointerType();
switch (type) {
case Common::PageType::Unmapped: {
2021-08-05 20:11:14 +00:00
on_unmapped(copy_amount, current_vaddr);
break;
}
case Common::PageType::Memory: {
DEBUG_ASSERT(pointer);
u8* mem_ptr = pointer + page_offset + (page_index << YUZU_PAGEBITS);
2021-08-05 20:11:14 +00:00
on_memory(copy_amount, mem_ptr);
break;
}
case Common::PageType::DebugMemory: {
DEBUG_ASSERT(pointer);
u8* const mem_ptr{GetPointerFromDebugMemory(current_vaddr)};
on_memory(copy_amount, mem_ptr);
break;
}
case Common::PageType::RasterizerCachedMemory: {
2021-08-05 20:11:14 +00:00
u8* const host_ptr{GetPointerFromRasterizerCachedMemory(current_vaddr)};
on_rasterizer(current_vaddr, copy_amount, host_ptr);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
2021-08-05 20:11:14 +00:00
increment(copy_amount);
remaining_size -= copy_amount;
}
}
2021-08-05 20:11:14 +00:00
template <bool UNSAFE>
void ReadBlockImpl(const Kernel::KProcess& process, const VAddr src_addr, void* dest_buffer,
const std::size_t size) {
WalkBlock(
process, src_addr, size,
[src_addr, size, &dest_buffer](const std::size_t copy_amount,
const VAddr current_vaddr) {
LOG_ERROR(HW_Memory,
"Unmapped ReadBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
current_vaddr, src_addr, size);
std::memset(dest_buffer, 0, copy_amount);
2021-08-05 20:11:14 +00:00
},
[&](const std::size_t copy_amount, const u8* const src_ptr) {
std::memcpy(dest_buffer, src_ptr, copy_amount);
2021-08-05 20:11:14 +00:00
},
[&](const VAddr current_vaddr, const std::size_t copy_amount,
const u8* const host_ptr) {
2021-08-05 20:29:43 +00:00
if constexpr (!UNSAFE) {
2021-08-05 20:11:14 +00:00
system.GPU().FlushRegion(current_vaddr, copy_amount);
}
std::memcpy(dest_buffer, host_ptr, copy_amount);
2021-08-05 20:11:14 +00:00
},
[&](const std::size_t copy_amount) {
2021-08-05 20:11:14 +00:00
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
});
}
void ReadBlock(const VAddr src_addr, void* dest_buffer, const std::size_t size) {
2021-08-05 20:11:14 +00:00
ReadBlockImpl<false>(*system.CurrentProcess(), src_addr, dest_buffer, size);
}
void ReadBlockUnsafe(const VAddr src_addr, void* dest_buffer, const std::size_t size) {
2021-08-05 20:11:14 +00:00
ReadBlockImpl<true>(*system.CurrentProcess(), src_addr, dest_buffer, size);
}
2021-08-05 20:11:14 +00:00
template <bool UNSAFE>
void WriteBlockImpl(const Kernel::KProcess& process, const VAddr dest_addr,
const void* src_buffer, const std::size_t size) {
WalkBlock(
process, dest_addr, size,
[dest_addr, size](const std::size_t copy_amount, const VAddr current_vaddr) {
LOG_ERROR(HW_Memory,
"Unmapped WriteBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
current_vaddr, dest_addr, size);
2021-08-05 20:11:14 +00:00
},
[&](const std::size_t copy_amount, u8* const dest_ptr) {
std::memcpy(dest_ptr, src_buffer, copy_amount);
2021-08-05 20:11:14 +00:00
},
[&](const VAddr current_vaddr, const std::size_t copy_amount, u8* const host_ptr) {
2021-08-05 20:29:43 +00:00
if constexpr (!UNSAFE) {
2021-08-05 20:11:14 +00:00
system.GPU().InvalidateRegion(current_vaddr, copy_amount);
}
std::memcpy(host_ptr, src_buffer, copy_amount);
2021-08-05 20:11:14 +00:00
},
[&](const std::size_t copy_amount) {
2021-08-05 20:11:14 +00:00
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
});
}
void WriteBlock(const VAddr dest_addr, const void* src_buffer, const std::size_t size) {
2021-08-05 20:11:14 +00:00
WriteBlockImpl<false>(*system.CurrentProcess(), dest_addr, src_buffer, size);
}
void WriteBlockUnsafe(const VAddr dest_addr, const void* src_buffer, const std::size_t size) {
2021-08-05 20:11:14 +00:00
WriteBlockImpl<true>(*system.CurrentProcess(), dest_addr, src_buffer, size);
}
void ZeroBlock(const Kernel::KProcess& process, const VAddr dest_addr, const std::size_t size) {
2021-08-05 20:11:14 +00:00
WalkBlock(
process, dest_addr, size,
[dest_addr, size](const std::size_t copy_amount, const VAddr current_vaddr) {
LOG_ERROR(HW_Memory,
"Unmapped ZeroBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
current_vaddr, dest_addr, size);
2021-08-05 20:11:14 +00:00
},
[](const std::size_t copy_amount, u8* const dest_ptr) {
std::memset(dest_ptr, 0, copy_amount);
2021-08-05 20:11:14 +00:00
},
[&](const VAddr current_vaddr, const std::size_t copy_amount, u8* const host_ptr) {
system.GPU().InvalidateRegion(current_vaddr, copy_amount);
std::memset(host_ptr, 0, copy_amount);
2021-08-05 20:11:14 +00:00
},
[](const std::size_t copy_amount) {});
}
void CopyBlock(const Kernel::KProcess& process, VAddr dest_addr, VAddr src_addr,
const std::size_t size) {
2021-08-05 21:09:08 +00:00
WalkBlock(
process, dest_addr, size,
[&](const std::size_t copy_amount, const VAddr current_vaddr) {
LOG_ERROR(HW_Memory,
"Unmapped CopyBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
current_vaddr, src_addr, size);
ZeroBlock(process, dest_addr, copy_amount);
2021-08-05 21:09:08 +00:00
},
[&](const std::size_t copy_amount, const u8* const src_ptr) {
2021-08-05 20:11:14 +00:00
WriteBlockImpl<false>(process, dest_addr, src_ptr, copy_amount);
2021-08-05 21:09:08 +00:00
},
[&](const VAddr current_vaddr, const std::size_t copy_amount, u8* const host_ptr) {
system.GPU().FlushRegion(current_vaddr, copy_amount);
2021-08-05 20:11:14 +00:00
WriteBlockImpl<false>(process, dest_addr, host_ptr, copy_amount);
2021-08-05 21:09:08 +00:00
},
[&](const std::size_t copy_amount) {
2021-08-05 21:09:08 +00:00
dest_addr += static_cast<VAddr>(copy_amount);
src_addr += static_cast<VAddr>(copy_amount);
});
}
template <typename Callback>
Result PerformCacheOperation(const Kernel::KProcess& process, VAddr dest_addr, std::size_t size,
Callback&& cb) {
class InvalidMemoryException : public std::exception {};
try {
WalkBlock(
process, dest_addr, size,
[&](const std::size_t block_size, const VAddr current_vaddr) {
LOG_ERROR(HW_Memory, "Unmapped cache maintenance @ {:#018X}", current_vaddr);
throw InvalidMemoryException();
},
[&](const std::size_t block_size, u8* const host_ptr) { cb(block_size, host_ptr); },
[&](const VAddr current_vaddr, const std::size_t block_size, u8* const host_ptr) {
system.GPU().FlushRegion(current_vaddr, block_size);
cb(block_size, host_ptr);
},
[](const std::size_t block_size) {});
} catch (InvalidMemoryException&) {
return Kernel::ResultInvalidCurrentMemory;
}
return ResultSuccess;
}
Result InvalidateDataCache(const Kernel::KProcess& process, VAddr dest_addr, std::size_t size) {
auto perform = [&](const std::size_t block_size, u8* const host_ptr) {
// Do nothing; this operation (dc ivac) cannot be supported
// from EL0
};
return PerformCacheOperation(process, dest_addr, size, perform);
}
Result StoreDataCache(const Kernel::KProcess& process, VAddr dest_addr, std::size_t size) {
auto perform = [&](const std::size_t block_size, u8* const host_ptr) {
// dc cvac: Store to point of coherency
Common::DataCacheLineCleanByVAToPoC(host_ptr, block_size);
};
return PerformCacheOperation(process, dest_addr, size, perform);
}
Result FlushDataCache(const Kernel::KProcess& process, VAddr dest_addr, std::size_t size) {
auto perform = [&](const std::size_t block_size, u8* const host_ptr) {
// dc civac: Store to point of coherency, and invalidate from cache
Common::DataCacheLineCleanAndInvalidateByVAToPoC(host_ptr, block_size);
};
return PerformCacheOperation(process, dest_addr, size, perform);
}
void MarkRegionDebug(VAddr vaddr, u64 size, bool debug) {
if (vaddr == 0) {
return;
}
// Iterate over a contiguous CPU address space, marking/unmarking the region.
// The region is at a granularity of CPU pages.
const u64 num_pages = ((vaddr + size - 1) >> YUZU_PAGEBITS) - (vaddr >> YUZU_PAGEBITS) + 1;
for (u64 i = 0; i < num_pages; ++i, vaddr += YUZU_PAGESIZE) {
const Common::PageType page_type{
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Type()};
if (debug) {
// Switch page type to debug if now debug
switch (page_type) {
case Common::PageType::Unmapped:
ASSERT_MSG(false, "Attempted to mark unmapped pages as debug");
break;
case Common::PageType::RasterizerCachedMemory:
case Common::PageType::DebugMemory:
// Page is already marked.
break;
case Common::PageType::Memory:
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store(
nullptr, Common::PageType::DebugMemory);
break;
default:
UNREACHABLE();
}
} else {
// Switch page type to non-debug if now non-debug
switch (page_type) {
case Common::PageType::Unmapped:
ASSERT_MSG(false, "Attempted to mark unmapped pages as non-debug");
break;
case Common::PageType::RasterizerCachedMemory:
case Common::PageType::Memory:
// Don't mess with already non-debug or rasterizer memory.
break;
case Common::PageType::DebugMemory: {
u8* const pointer{GetPointerFromDebugMemory(vaddr & ~YUZU_PAGEMASK)};
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store(
pointer - (vaddr & ~YUZU_PAGEMASK), Common::PageType::Memory);
break;
}
default:
UNREACHABLE();
}
}
}
}
void RasterizerMarkRegionCached(VAddr vaddr, u64 size, bool cached) {
if (vaddr == 0) {
return;
}
2020-01-19 01:49:30 +01:00
if (Settings::IsFastmemEnabled()) {
const bool is_read_enable = Settings::IsGPULevelHigh() || !cached;
system.DeviceMemory().buffer.Protect(vaddr, size, is_read_enable, !cached);
}
2020-01-19 01:49:30 +01:00
// Iterate over a contiguous CPU address space, which corresponds to the specified GPU
// address space, marking the region as un/cached. The region is marked un/cached at a
// granularity of CPU pages, hence why we iterate on a CPU page basis (note: GPU page size
// is different). This assumes the specified GPU address region is contiguous as well.
const u64 num_pages = ((vaddr + size - 1) >> YUZU_PAGEBITS) - (vaddr >> YUZU_PAGEBITS) + 1;
for (u64 i = 0; i < num_pages; ++i, vaddr += YUZU_PAGESIZE) {
const Common::PageType page_type{
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Type()};
if (cached) {
// Switch page type to cached if now cached
switch (page_type) {
case Common::PageType::Unmapped:
// It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping.
break;
case Common::PageType::DebugMemory:
case Common::PageType::Memory:
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store(
nullptr, Common::PageType::RasterizerCachedMemory);
break;
case Common::PageType::RasterizerCachedMemory:
// There can be more than one GPU region mapped per CPU region, so it's common
// that this area is already marked as cached.
break;
default:
UNREACHABLE();
}
} else {
// Switch page type to uncached if now uncached
switch (page_type) {
2021-08-05 20:29:43 +00:00
case Common::PageType::Unmapped: // NOLINT(bugprone-branch-clone)
// It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping.
2021-08-05 20:29:43 +00:00
break;
case Common::PageType::DebugMemory:
case Common::PageType::Memory:
// There can be more than one GPU region mapped per CPU region, so it's common
// that this area is already unmarked as cached.
break;
case Common::PageType::RasterizerCachedMemory: {
u8* const pointer{GetPointerFromRasterizerCachedMemory(vaddr & ~YUZU_PAGEMASK)};
if (pointer == nullptr) {
// It's possible that this function has been called while updating the
// pagetable after unmapping a VMA. In that case the underlying VMA will no
// longer exist, and we should just leave the pagetable entry blank.
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store(
nullptr, Common::PageType::Unmapped);
} else {
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store(
pointer - (vaddr & ~YUZU_PAGEMASK), Common::PageType::Memory);
}
break;
}
default:
UNREACHABLE();
}
}
}
}
/**
* Maps a region of pages as a specific type.
*
* @param page_table The page table to use to perform the mapping.
* @param base The base address to begin mapping at.
* @param size The total size of the range in bytes.
* @param target The target address to begin mapping from.
* @param type The page type to map the memory as.
*/
2020-04-08 22:50:46 -04:00
void MapPages(Common::PageTable& page_table, VAddr base, u64 size, PAddr target,
Common::PageType type) {
LOG_DEBUG(HW_Memory, "Mapping {:016X} onto {:016X}-{:016X}", target, base * YUZU_PAGESIZE,
(base + size) * YUZU_PAGESIZE);
// During boot, current_page_table might not be set yet, in which case we need not flush
if (system.IsPoweredOn()) {
auto& gpu = system.GPU();
for (u64 i = 0; i < size; i++) {
const auto page = base + i;
if (page_table.pointers[page].Type() == Common::PageType::RasterizerCachedMemory) {
gpu.FlushAndInvalidateRegion(page << YUZU_PAGEBITS, YUZU_PAGESIZE);
}
}
}
const VAddr end = base + size;
ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
base + page_table.pointers.size());
2020-04-08 22:50:46 -04:00
if (!target) {
ASSERT_MSG(type != Common::PageType::Memory,
"Mapping memory page without a pointer @ {:016x}", base * YUZU_PAGESIZE);
2020-04-08 22:50:46 -04:00
while (base != end) {
page_table.pointers[base].Store(nullptr, type);
2020-04-08 22:50:46 -04:00
page_table.backing_addr[base] = 0;
2020-04-08 22:50:46 -04:00
base += 1;
}
} else {
while (base != end) {
page_table.pointers[base].Store(
system.DeviceMemory().GetPointer<u8>(target) - (base << YUZU_PAGEBITS), type);
page_table.backing_addr[base] = target - (base << YUZU_PAGEBITS);
2020-04-08 22:50:46 -04:00
ASSERT_MSG(page_table.pointers[base].Pointer(),
"memory mapping base yield a nullptr within the table");
base += 1;
target += YUZU_PAGESIZE;
}
}
}
2013-09-18 23:52:51 -04:00
[[nodiscard]] u8* GetPointerImpl(VAddr vaddr, auto on_unmapped, auto on_rasterizer) const {
// AARCH64 masks the upper 16 bit of all memory accesses
2022-07-16 23:48:45 +01:00
vaddr &= 0xffffffffffffULL;
if (vaddr >= 1uLL << current_page_table->GetAddressSpaceBits()) {
on_unmapped();
return nullptr;
}
// Avoid adding any extra logic to this fast-path block
const uintptr_t raw_pointer = current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Raw();
if (u8* const pointer = Common::PageTable::PageInfo::ExtractPointer(raw_pointer)) {
return &pointer[vaddr];
}
switch (Common::PageTable::PageInfo::ExtractType(raw_pointer)) {
case Common::PageType::Unmapped:
on_unmapped();
return nullptr;
case Common::PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ 0x{:016X}", vaddr);
return nullptr;
case Common::PageType::DebugMemory:
return GetPointerFromDebugMemory(vaddr);
case Common::PageType::RasterizerCachedMemory: {
u8* const host_ptr{GetPointerFromRasterizerCachedMemory(vaddr)};
on_rasterizer();
return host_ptr;
}
default:
UNREACHABLE();
}
return nullptr;
}
[[nodiscard]] u8* GetPointer(const VAddr vaddr) const {
return GetPointerImpl(
2021-08-07 03:03:21 +00:00
vaddr, [vaddr]() { LOG_ERROR(HW_Memory, "Unmapped GetPointer @ 0x{:016X}", vaddr); },
[]() {});
}
2022-02-19 14:18:02 +01:00
[[nodiscard]] u8* GetPointerSilent(const VAddr vaddr) const {
return GetPointerImpl(
vaddr, []() {}, []() {});
}
/**
* Reads a particular data type out of memory at the given virtual address.
*
* @param vaddr The virtual address to read the data type from.
*
* @tparam T The data type to read out of memory. This type *must* be
* trivially copyable, otherwise the behavior of this function
* is undefined.
*
* @returns The instance of T read from the specified virtual address.
*/
template <typename T>
T Read(VAddr vaddr) {
T result = 0;
const u8* const ptr = GetPointerImpl(
vaddr,
[vaddr]() {
2021-08-07 03:03:21 +00:00
LOG_ERROR(HW_Memory, "Unmapped Read{} @ 0x{:016X}", sizeof(T) * 8, vaddr);
},
[&]() { system.GPU().FlushRegion(vaddr, sizeof(T)); });
if (ptr) {
std::memcpy(&result, ptr, sizeof(T));
}
return result;
}
/**
* Writes a particular data type to memory at the given virtual address.
*
* @param vaddr The virtual address to write the data type to.
*
* @tparam T The data type to write to memory. This type *must* be
* trivially copyable, otherwise the behavior of this function
* is undefined.
*/
template <typename T>
void Write(VAddr vaddr, const T data) {
u8* const ptr = GetPointerImpl(
vaddr,
[vaddr, data]() {
2021-08-07 03:03:21 +00:00
LOG_ERROR(HW_Memory, "Unmapped Write{} @ 0x{:016X} = 0x{:016X}", sizeof(T) * 8,
vaddr, static_cast<u64>(data));
},
[&]() { system.GPU().InvalidateRegion(vaddr, sizeof(T)); });
if (ptr) {
std::memcpy(ptr, &data, sizeof(T));
}
}
template <typename T>
bool WriteExclusive(VAddr vaddr, const T data, const T expected) {
u8* const ptr = GetPointerImpl(
vaddr,
[vaddr, data]() {
2021-08-07 03:03:21 +00:00
LOG_ERROR(HW_Memory, "Unmapped WriteExclusive{} @ 0x{:016X} = 0x{:016X}",
sizeof(T) * 8, vaddr, static_cast<u64>(data));
},
[&]() { system.GPU().InvalidateRegion(vaddr, sizeof(T)); });
if (ptr) {
const auto volatile_pointer = reinterpret_cast<volatile T*>(ptr);
return Common::AtomicCompareAndSwap(volatile_pointer, data, expected);
}
return true;
}
bool WriteExclusive128(VAddr vaddr, const u128 data, const u128 expected) {
u8* const ptr = GetPointerImpl(
vaddr,
[vaddr, data]() {
2021-08-07 03:03:21 +00:00
LOG_ERROR(HW_Memory, "Unmapped WriteExclusive128 @ 0x{:016X} = 0x{:016X}{:016X}",
vaddr, static_cast<u64>(data[1]), static_cast<u64>(data[0]));
},
[&]() { system.GPU().InvalidateRegion(vaddr, sizeof(u128)); });
if (ptr) {
const auto volatile_pointer = reinterpret_cast<volatile u64*>(ptr);
return Common::AtomicCompareAndSwap(volatile_pointer, data, expected);
}
return true;
}
Common::PageTable* current_page_table = nullptr;
Core::System& system;
};
2014-04-26 01:27:25 -04:00
Memory::Memory(Core::System& system_) : system{system_} {
Reset();
}
Memory::~Memory() = default;
2016-01-30 18:41:04 +00:00
void Memory::Reset() {
impl = std::make_unique<Impl>(system);
}
void Memory::SetCurrentPageTable(Kernel::KProcess& process, u32 core_id) {
impl->SetCurrentPageTable(process, core_id);
}
2020-04-08 22:50:46 -04:00
void Memory::MapMemoryRegion(Common::PageTable& page_table, VAddr base, u64 size, PAddr target) {
impl->MapMemoryRegion(page_table, base, size, target);
}
void Memory::UnmapRegion(Common::PageTable& page_table, VAddr base, u64 size) {
impl->UnmapRegion(page_table, base, size);
}
2016-04-16 18:57:57 -04:00
bool Memory::IsValidVirtualAddress(const VAddr vaddr) const {
2021-08-05 20:11:14 +00:00
const Kernel::KProcess& process = *system.CurrentProcess();
2021-08-05 20:29:43 +00:00
const auto& page_table = process.PageTable().PageTableImpl();
const size_t page = vaddr >> YUZU_PAGEBITS;
if (page >= page_table.pointers.size()) {
return false;
}
const auto [pointer, type] = page_table.pointers[page].PointerType();
return pointer != nullptr || type == Common::PageType::RasterizerCachedMemory ||
type == Common::PageType::DebugMemory;
}
bool Memory::IsValidVirtualAddressRange(VAddr base, u64 size) const {
VAddr end = base + size;
VAddr page = Common::AlignDown(base, YUZU_PAGESIZE);
for (; page < end; page += YUZU_PAGESIZE) {
if (!IsValidVirtualAddress(page)) {
return false;
}
}
return true;
}
u8* Memory::GetPointer(VAddr vaddr) {
return impl->GetPointer(vaddr);
}
2022-02-19 14:18:02 +01:00
u8* Memory::GetPointerSilent(VAddr vaddr) {
return impl->GetPointerSilent(vaddr);
}
const u8* Memory::GetPointer(VAddr vaddr) const {
return impl->GetPointer(vaddr);
}
u8 Memory::Read8(const VAddr addr) {
return impl->Read8(addr);
}
u16 Memory::Read16(const VAddr addr) {
return impl->Read16(addr);
}
u32 Memory::Read32(const VAddr addr) {
return impl->Read32(addr);
}
u64 Memory::Read64(const VAddr addr) {
return impl->Read64(addr);
}
void Memory::Write8(VAddr addr, u8 data) {
impl->Write8(addr, data);
}
void Memory::Write16(VAddr addr, u16 data) {
impl->Write16(addr, data);
}
void Memory::Write32(VAddr addr, u32 data) {
impl->Write32(addr, data);
}
void Memory::Write64(VAddr addr, u64 data) {
impl->Write64(addr, data);
}
bool Memory::WriteExclusive8(VAddr addr, u8 data, u8 expected) {
return impl->WriteExclusive8(addr, data, expected);
}
bool Memory::WriteExclusive16(VAddr addr, u16 data, u16 expected) {
return impl->WriteExclusive16(addr, data, expected);
}
bool Memory::WriteExclusive32(VAddr addr, u32 data, u32 expected) {
return impl->WriteExclusive32(addr, data, expected);
}
bool Memory::WriteExclusive64(VAddr addr, u64 data, u64 expected) {
return impl->WriteExclusive64(addr, data, expected);
}
bool Memory::WriteExclusive128(VAddr addr, u128 data, u128 expected) {
return impl->WriteExclusive128(addr, data, expected);
}
std::string Memory::ReadCString(VAddr vaddr, std::size_t max_length) {
return impl->ReadCString(vaddr, max_length);
}
void Memory::ReadBlock(const Kernel::KProcess& process, const VAddr src_addr, void* dest_buffer,
const std::size_t size) {
2021-08-05 20:11:14 +00:00
impl->ReadBlockImpl<false>(process, src_addr, dest_buffer, size);
}
void Memory::ReadBlock(const VAddr src_addr, void* dest_buffer, const std::size_t size) {
impl->ReadBlock(src_addr, dest_buffer, size);
}
void Memory::ReadBlockUnsafe(const VAddr src_addr, void* dest_buffer, const std::size_t size) {
impl->ReadBlockUnsafe(src_addr, dest_buffer, size);
}
void Memory::WriteBlock(const Kernel::KProcess& process, VAddr dest_addr, const void* src_buffer,
std::size_t size) {
2021-08-05 20:11:14 +00:00
impl->WriteBlockImpl<false>(process, dest_addr, src_buffer, size);
}
void Memory::WriteBlock(const VAddr dest_addr, const void* src_buffer, const std::size_t size) {
impl->WriteBlock(dest_addr, src_buffer, size);
}
void Memory::WriteBlockUnsafe(const VAddr dest_addr, const void* src_buffer,
const std::size_t size) {
impl->WriteBlockUnsafe(dest_addr, src_buffer, size);
}
void Memory::CopyBlock(const Kernel::KProcess& process, VAddr dest_addr, VAddr src_addr,
const std::size_t size) {
impl->CopyBlock(process, dest_addr, src_addr, size);
}
2022-07-16 23:48:45 +01:00
void Memory::ZeroBlock(const Kernel::KProcess& process, VAddr dest_addr, const std::size_t size) {
impl->ZeroBlock(process, dest_addr, size);
}
Result Memory::InvalidateDataCache(const Kernel::KProcess& process, VAddr dest_addr,
const std::size_t size) {
return impl->InvalidateDataCache(process, dest_addr, size);
}
Result Memory::StoreDataCache(const Kernel::KProcess& process, VAddr dest_addr,
const std::size_t size) {
return impl->StoreDataCache(process, dest_addr, size);
}
Result Memory::FlushDataCache(const Kernel::KProcess& process, VAddr dest_addr,
const std::size_t size) {
return impl->FlushDataCache(process, dest_addr, size);
}
void Memory::RasterizerMarkRegionCached(VAddr vaddr, u64 size, bool cached) {
impl->RasterizerMarkRegionCached(vaddr, size, cached);
}
void Memory::MarkRegionDebug(VAddr vaddr, u64 size, bool debug) {
impl->MarkRegionDebug(vaddr, size, debug);
}
} // namespace Core::Memory