yuzu-android/src/core/cpu_manager.cpp

365 lines
12 KiB
C++
Raw Normal View History

// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/fiber.h"
#include "common/microprofile.h"
#include "common/thread.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/cpu_manager.h"
#include "core/frontend/emu_window.h"
#include "core/gdbstub/gdbstub.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/physical_core.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
namespace Core {
CpuManager::CpuManager(System& system) : system{system} {}
CpuManager::~CpuManager() = default;
void CpuManager::ThreadStart(CpuManager& cpu_manager, std::size_t core) {
if (!cpu_manager.is_async_gpu && !cpu_manager.is_multicore) {
cpu_manager.render_window->MakeCurrent();
}
cpu_manager.RunThread(core);
if (!cpu_manager.is_async_gpu && !cpu_manager.is_multicore) {
cpu_manager.render_window->DoneCurrent();
}
}
void CpuManager::SetRenderWindow(Core::Frontend::EmuWindow& render_window) {
this->render_window = &render_window;
}
void CpuManager::Initialize() {
running_mode = true;
if (is_multicore) {
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
core_data[core].host_thread =
std::make_unique<std::thread>(ThreadStart, std::ref(*this), core);
}
} else {
core_data[0].host_thread = std::make_unique<std::thread>(ThreadStart, std::ref(*this), 0);
}
}
void CpuManager::Shutdown() {
running_mode = false;
Pause(false);
if (is_multicore) {
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
core_data[core].host_thread->join();
core_data[core].host_thread.reset();
}
} else {
core_data[0].host_thread->join();
core_data[0].host_thread.reset();
}
}
std::function<void(void*)> CpuManager::GetGuestThreadStartFunc() {
return std::function<void(void*)>(GuestThreadFunction);
}
std::function<void(void*)> CpuManager::GetIdleThreadStartFunc() {
return std::function<void(void*)>(IdleThreadFunction);
}
std::function<void(void*)> CpuManager::GetSuspendThreadStartFunc() {
return std::function<void(void*)>(SuspendThreadFunction);
}
void CpuManager::GuestThreadFunction(void* cpu_manager_) {
CpuManager* cpu_manager = static_cast<CpuManager*>(cpu_manager_);
if (cpu_manager->is_multicore) {
cpu_manager->MultiCoreRunGuestThread();
} else {
cpu_manager->SingleCoreRunGuestThread();
}
}
void CpuManager::GuestRewindFunction(void* cpu_manager_) {
CpuManager* cpu_manager = static_cast<CpuManager*>(cpu_manager_);
if (cpu_manager->is_multicore) {
cpu_manager->MultiCoreRunGuestLoop();
} else {
cpu_manager->SingleCoreRunGuestLoop();
}
}
void CpuManager::IdleThreadFunction(void* cpu_manager_) {
CpuManager* cpu_manager = static_cast<CpuManager*>(cpu_manager_);
if (cpu_manager->is_multicore) {
cpu_manager->MultiCoreRunIdleThread();
} else {
cpu_manager->SingleCoreRunIdleThread();
}
}
void CpuManager::SuspendThreadFunction(void* cpu_manager_) {
CpuManager* cpu_manager = static_cast<CpuManager*>(cpu_manager_);
if (cpu_manager->is_multicore) {
cpu_manager->MultiCoreRunSuspendThread();
} else {
cpu_manager->SingleCoreRunSuspendThread();
}
}
void* CpuManager::GetStartFuncParamater() {
return static_cast<void*>(this);
}
///////////////////////////////////////////////////////////////////////////////
/// MultiCore ///
///////////////////////////////////////////////////////////////////////////////
void CpuManager::MultiCoreRunGuestThread() {
auto& kernel = system.Kernel();
{
auto& sched = kernel.CurrentScheduler();
sched.OnThreadStart();
}
MultiCoreRunGuestLoop();
}
void CpuManager::MultiCoreRunGuestLoop() {
auto& kernel = system.Kernel();
auto* thread = kernel.CurrentScheduler().GetCurrentThread();
auto host_context = thread->GetHostContext();
host_context->SetRewindPoint(std::function<void(void*)>(GuestRewindFunction), this);
host_context.reset();
while (true) {
auto& physical_core = kernel.CurrentPhysicalCore();
system.EnterDynarmicProfile();
while (!physical_core.IsInterrupted()) {
physical_core.Run();
2020-02-25 10:43:34 -04:00
}
system.ExitDynarmicProfile();
physical_core.ClearExclusive();
auto& scheduler = physical_core.Scheduler();
scheduler.TryDoContextSwitch();
}
}
void CpuManager::MultiCoreRunIdleThread() {
auto& kernel = system.Kernel();
while (true) {
auto& physical_core = kernel.CurrentPhysicalCore();
physical_core.Idle();
auto& scheduler = physical_core.Scheduler();
scheduler.TryDoContextSwitch();
}
}
void CpuManager::MultiCoreRunSuspendThread() {
auto& kernel = system.Kernel();
{
auto& sched = kernel.CurrentScheduler();
sched.OnThreadStart();
}
while (true) {
auto core = kernel.GetCurrentHostThreadID();
auto& scheduler = kernel.CurrentScheduler();
Kernel::Thread* current_thread = scheduler.GetCurrentThread();
Common::Fiber::YieldTo(current_thread->GetHostContext(), core_data[core].host_context);
ASSERT(scheduler.ContextSwitchPending());
ASSERT(core == kernel.GetCurrentHostThreadID());
scheduler.TryDoContextSwitch();
}
}
void CpuManager::MultiCorePause(bool paused) {
if (!paused) {
bool all_not_barrier = false;
while (!all_not_barrier) {
all_not_barrier = true;
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
all_not_barrier &=
!core_data[core].is_running.load() && core_data[core].initialized.load();
}
}
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
core_data[core].enter_barrier->Set();
}
if (paused_state.load()) {
bool all_barrier = false;
while (!all_barrier) {
all_barrier = true;
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
all_barrier &=
core_data[core].is_paused.load() && core_data[core].initialized.load();
}
}
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
core_data[core].exit_barrier->Set();
}
}
} else {
/// Wait until all cores are paused.
bool all_barrier = false;
while (!all_barrier) {
all_barrier = true;
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
all_barrier &=
core_data[core].is_paused.load() && core_data[core].initialized.load();
}
}
/// Don't release the barrier
}
paused_state = paused;
}
///////////////////////////////////////////////////////////////////////////////
/// SingleCore ///
///////////////////////////////////////////////////////////////////////////////
void CpuManager::SingleCoreRunGuestThread() {
auto& kernel = system.Kernel();
{
auto& sched = kernel.CurrentScheduler();
sched.OnThreadStart();
}
SingleCoreRunGuestLoop();
}
void CpuManager::SingleCoreRunGuestLoop() {
auto& kernel = system.Kernel();
auto* thread = kernel.CurrentScheduler().GetCurrentThread();
auto host_context = thread->GetHostContext();
host_context->SetRewindPoint(std::function<void(void*)>(GuestRewindFunction), this);
host_context.reset();
while (true) {
auto& physical_core = kernel.CurrentPhysicalCore();
system.EnterDynarmicProfile();
while (!physical_core.IsInterrupted()) {
physical_core.Run();
preemption_count++;
if (preemption_count % max_cycle_runs == 0) {
break;
}
}
physical_core.ClearExclusive();
system.ExitDynarmicProfile();
PreemptSingleCore();
auto& scheduler = kernel.Scheduler(current_core);
scheduler.TryDoContextSwitch();
}
}
void CpuManager::SingleCoreRunIdleThread() {
auto& kernel = system.Kernel();
while (true) {
auto& physical_core = kernel.CurrentPhysicalCore();
PreemptSingleCore();
auto& scheduler = physical_core.Scheduler();
scheduler.TryDoContextSwitch();
}
}
void CpuManager::SingleCoreRunSuspendThread() {
auto& kernel = system.Kernel();
{
auto& sched = kernel.CurrentScheduler();
sched.OnThreadStart();
}
while (true) {
auto core = kernel.GetCurrentHostThreadID();
auto& scheduler = kernel.CurrentScheduler();
Kernel::Thread* current_thread = scheduler.GetCurrentThread();
Common::Fiber::YieldTo(current_thread->GetHostContext(), core_data[0].host_context);
ASSERT(scheduler.ContextSwitchPending());
ASSERT(core == kernel.GetCurrentHostThreadID());
scheduler.TryDoContextSwitch();
}
}
void CpuManager::PreemptSingleCore() {
preemption_count = 0;
std::size_t old_core = current_core;
current_core.store((current_core + 1) % Core::Hardware::NUM_CPU_CORES);
auto& scheduler = system.Kernel().Scheduler(old_core);
Kernel::Thread* current_thread = scheduler.GetCurrentThread();
scheduler.Unload();
auto& next_scheduler = system.Kernel().Scheduler(current_core);
Common::Fiber::YieldTo(current_thread->GetHostContext(), next_scheduler.ControlContext());
/// May have changed scheduler
auto& current_scheduler = system.Kernel().Scheduler(current_core);
current_scheduler.Reload();
}
void CpuManager::SingleCorePause(bool paused) {
if (!paused) {
bool all_not_barrier = false;
while (!all_not_barrier) {
all_not_barrier = !core_data[0].is_running.load() && core_data[0].initialized.load();
}
core_data[0].enter_barrier->Set();
if (paused_state.load()) {
bool all_barrier = false;
while (!all_barrier) {
all_barrier = core_data[0].is_paused.load() && core_data[0].initialized.load();
}
core_data[0].exit_barrier->Set();
}
} else {
/// Wait until all cores are paused.
bool all_barrier = false;
while (!all_barrier) {
all_barrier = core_data[0].is_paused.load() && core_data[0].initialized.load();
}
/// Don't release the barrier
}
paused_state = paused;
}
void CpuManager::Pause(bool paused) {
if (is_multicore) {
MultiCorePause(paused);
} else {
SingleCorePause(paused);
}
}
void CpuManager::RunThread(std::size_t core) {
/// Initialization
system.RegisterCoreThread(core);
std::string name;
if (is_multicore) {
name = "yuzu:CoreCPUThread_" + std::to_string(core);
} else {
name = "yuzu:CPUThread";
}
MicroProfileOnThreadCreate(name.c_str());
Common::SetCurrentThreadName(name.c_str());
auto& data = core_data[core];
data.enter_barrier = std::make_unique<Common::Event>();
data.exit_barrier = std::make_unique<Common::Event>();
data.host_context = Common::Fiber::ThreadToFiber();
data.is_running = false;
data.initialized = true;
/// Running
while (running_mode) {
data.is_running = false;
data.enter_barrier->Wait();
auto& scheduler = system.Kernel().CurrentScheduler();
Kernel::Thread* current_thread = scheduler.GetCurrentThread();
data.is_running = true;
Common::Fiber::YieldTo(data.host_context, current_thread->GetHostContext());
data.is_running = false;
data.is_paused = true;
data.exit_barrier->Wait();
data.is_paused = false;
}
/// Time to cleanup
data.host_context->Exit();
data.enter_barrier.reset();
data.exit_barrier.reset();
data.initialized = false;
}
} // namespace Core