yuzu-android/src/core/memory.cpp

1116 lines
43 KiB
C++
Raw Normal View History

chore: make yuzu REUSE compliant [REUSE] is a specification that aims at making file copyright information consistent, so that it can be both human and machine readable. It basically requires that all files have a header containing copyright and licensing information. When this isn't possible, like when dealing with binary assets, generated files or embedded third-party dependencies, it is permitted to insert copyright information in the `.reuse/dep5` file. Oh, and it also requires that all the licenses used in the project are present in the `LICENSES` folder, that's why the diff is so huge. This can be done automatically with `reuse download --all`. The `reuse` tool also contains a handy subcommand that analyzes the project and tells whether or not the project is (still) compliant, `reuse lint`. Following REUSE has a few advantages over the current approach: - Copyright information is easy to access for users / downstream - Files like `dist/license.md` do not need to exist anymore, as `.reuse/dep5` is used instead - `reuse lint` makes it easy to ensure that copyright information of files like binary assets / images is always accurate and up to date To add copyright information of files that didn't have it I looked up who committed what and when, for each file. As yuzu contributors do not have to sign a CLA or similar I couldn't assume that copyright ownership was of the "yuzu Emulator Project", so I used the name and/or email of the commit author instead. [REUSE]: https://reuse.software Follow-up to 01cf05bc75b1e47beb08937439f3ed9339e7b254
2022-05-15 02:06:02 +02:00
// SPDX-FileCopyrightText: 2015 Citra Emulator Project
// SPDX-FileCopyrightText: 2018 yuzu Emulator Project
chore: make yuzu REUSE compliant [REUSE] is a specification that aims at making file copyright information consistent, so that it can be both human and machine readable. It basically requires that all files have a header containing copyright and licensing information. When this isn't possible, like when dealing with binary assets, generated files or embedded third-party dependencies, it is permitted to insert copyright information in the `.reuse/dep5` file. Oh, and it also requires that all the licenses used in the project are present in the `LICENSES` folder, that's why the diff is so huge. This can be done automatically with `reuse download --all`. The `reuse` tool also contains a handy subcommand that analyzes the project and tells whether or not the project is (still) compliant, `reuse lint`. Following REUSE has a few advantages over the current approach: - Copyright information is easy to access for users / downstream - Files like `dist/license.md` do not need to exist anymore, as `.reuse/dep5` is used instead - `reuse lint` makes it easy to ensure that copyright information of files like binary assets / images is always accurate and up to date To add copyright information of files that didn't have it I looked up who committed what and when, for each file. As yuzu contributors do not have to sign a CLA or similar I couldn't assume that copyright ownership was of the "yuzu Emulator Project", so I used the name and/or email of the commit author instead. [REUSE]: https://reuse.software Follow-up to 01cf05bc75b1e47beb08937439f3ed9339e7b254
2022-05-15 02:06:02 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
2013-09-18 23:52:51 -04:00
#include <algorithm>
2015-09-09 23:23:44 -04:00
#include <cstring>
#include <mutex>
#include <span>
#include "common/assert.h"
#include "common/atomic_ops.h"
2015-05-06 04:06:12 -03:00
#include "common/common_types.h"
#include "common/heap_tracker.h"
2015-05-06 04:06:12 -03:00
#include "common/logging/log.h"
#include "common/page_table.h"
#include "common/scope_exit.h"
2020-01-19 01:49:30 +01:00
#include "common/settings.h"
2015-05-06 04:06:12 -03:00
#include "common/swap.h"
#include "core/core.h"
2020-04-08 22:50:46 -04:00
#include "core/device_memory.h"
#include "core/gpu_dirty_memory_manager.h"
2023-04-30 17:14:06 +02:00
#include "core/hardware_properties.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process.h"
#include "core/memory.h"
#include "video_core/gpu.h"
#include "video_core/host1x/gpu_device_memory_manager.h"
#include "video_core/host1x/host1x.h"
2023-04-30 17:14:06 +02:00
#include "video_core/rasterizer_download_area.h"
namespace Core::Memory {
namespace {
bool AddressSpaceContains(const Common::PageTable& table, const Common::ProcessAddress addr,
const std::size_t size) {
const Common::ProcessAddress max_addr = 1ULL << table.GetAddressSpaceBits();
return addr + size >= addr && addr + size <= max_addr;
}
} // namespace
// Implementation class used to keep the specifics of the memory subsystem hidden
// from outside classes. This also allows modification to the internals of the memory
// subsystem without needing to rebuild all files that make use of the memory interface.
struct Memory::Impl {
2023-12-30 04:37:25 +01:00
explicit Impl(Core::System& system_) : system{system_} {}
void SetCurrentPageTable(Kernel::KProcess& process) {
current_page_table = &process.GetPageTable().GetImpl();
if (std::addressof(process) == system.ApplicationProcess() &&
Settings::IsFastmemEnabled()) {
current_page_table->fastmem_arena = system.DeviceMemory().buffer.VirtualBasePointer();
} else {
current_page_table->fastmem_arena = nullptr;
}
#ifdef __linux__
heap_tracker.emplace(system.DeviceMemory().buffer);
buffer = std::addressof(*heap_tracker);
#else
buffer = std::addressof(system.DeviceMemory().buffer);
#endif
}
void MapMemoryRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size,
Common::PhysicalAddress target, Common::MemoryPermission perms,
bool separate_heap) {
ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((base & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", GetInteger(base));
ASSERT_MSG(target >= DramMemoryMap::Base, "Out of bounds target: {:016X}",
GetInteger(target));
MapPages(page_table, base / YUZU_PAGESIZE, size / YUZU_PAGESIZE, target,
Common::PageType::Memory);
2020-01-19 01:49:30 +01:00
if (current_page_table->fastmem_arena) {
buffer->Map(GetInteger(base), GetInteger(target) - DramMemoryMap::Base, size, perms,
separate_heap);
}
}
void UnmapRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size,
bool separate_heap) {
ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((base & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", GetInteger(base));
MapPages(page_table, base / YUZU_PAGESIZE, size / YUZU_PAGESIZE, 0,
Common::PageType::Unmapped);
2020-01-19 01:49:30 +01:00
if (current_page_table->fastmem_arena) {
buffer->Unmap(GetInteger(base), size, separate_heap);
}
}
2018-05-02 22:36:51 -04:00
2023-11-23 11:26:06 +02:00
void ProtectRegion(Common::PageTable& page_table, VAddr vaddr, u64 size,
Common::MemoryPermission perms) {
ASSERT_MSG((size & YUZU_PAGEMASK) == 0, "non-page aligned size: {:016X}", size);
ASSERT_MSG((vaddr & YUZU_PAGEMASK) == 0, "non-page aligned base: {:016X}", vaddr);
if (!current_page_table->fastmem_arena) {
2023-11-23 11:26:06 +02:00
return;
}
u64 protect_bytes{};
u64 protect_begin{};
for (u64 addr = vaddr; addr < vaddr + size; addr += YUZU_PAGESIZE) {
const Common::PageType page_type{
current_page_table->pointers[addr >> YUZU_PAGEBITS].Type()};
switch (page_type) {
case Common::PageType::RasterizerCachedMemory:
if (protect_bytes > 0) {
buffer->Protect(protect_begin, protect_bytes, perms);
2023-11-23 11:26:06 +02:00
protect_bytes = 0;
}
break;
default:
if (protect_bytes == 0) {
protect_begin = addr;
}
protect_bytes += YUZU_PAGESIZE;
}
}
if (protect_bytes > 0) {
buffer->Protect(protect_begin, protect_bytes, perms);
2023-11-23 11:26:06 +02:00
}
}
[[nodiscard]] u8* GetPointerFromRasterizerCachedMemory(u64 vaddr) const {
const Common::PhysicalAddress paddr{
current_page_table->backing_addr[vaddr >> YUZU_PAGEBITS]};
2020-04-08 22:50:46 -04:00
if (!paddr) {
return {};
}
Fixes and workarounds to make UBSan happier on macOS There are still some other issues not addressed here, but it's a start. Workarounds for false-positive reports: - `RasterizerAccelerated`: Put a gigantic array behind a `unique_ptr`, because UBSan has a [hardcoded limit](https://stackoverflow.com/questions/64531383/c-runtime-error-using-fsanitize-undefined-object-has-a-possibly-invalid-vp) of how big it thinks objects can be, specifically when dealing with offset-to-top values used with multiple inheritance. Hopefully this doesn't have a performance impact. - `QueryCacheBase::QueryCacheBase`: Avoid an operation that UBSan thinks is UB even though it at least arguably isn't. See the link in the comment for more information. Fixes for correct reports: - `PageTable`, `Memory`: Use `uintptr_t` values instead of pointers to avoid UB from pointer overflow (when pointer arithmetic wraps around the address space). - `KScheduler::Reload`: `thread->GetOwnerProcess()` can be `nullptr`; avoid calling methods on it in this case. (The existing code returns a garbage reference to a field, which is then passed into `LoadWatchpointArray`, and apparently it's never used, so it's harmless in practice but still triggers UBSan.) - `KAutoObject::Close`: This function calls `this->Destroy()`, which overwrites the beginning of the object with junk (specifically a free list pointer). Then it calls `this->UnregisterWithKernel()`. UBSan complains about a type mismatch because the vtable has been overwritten, and I believe this is indeed UB. `UnregisterWithKernel` also loads `m_kernel` from the 'freed' object, which seems to be technically safe (the overwriting doesn't extend as far as that field), but seems dubious. Switch to a `static` method and load `m_kernel` in advance.
2023-07-01 15:00:39 -07:00
return system.DeviceMemory().GetPointer<u8>(paddr + vaddr);
}
[[nodiscard]] u8* GetPointerFromDebugMemory(u64 vaddr) const {
const Common::PhysicalAddress paddr{
current_page_table->backing_addr[vaddr >> YUZU_PAGEBITS]};
if (paddr == 0) {
return {};
}
Fixes and workarounds to make UBSan happier on macOS There are still some other issues not addressed here, but it's a start. Workarounds for false-positive reports: - `RasterizerAccelerated`: Put a gigantic array behind a `unique_ptr`, because UBSan has a [hardcoded limit](https://stackoverflow.com/questions/64531383/c-runtime-error-using-fsanitize-undefined-object-has-a-possibly-invalid-vp) of how big it thinks objects can be, specifically when dealing with offset-to-top values used with multiple inheritance. Hopefully this doesn't have a performance impact. - `QueryCacheBase::QueryCacheBase`: Avoid an operation that UBSan thinks is UB even though it at least arguably isn't. See the link in the comment for more information. Fixes for correct reports: - `PageTable`, `Memory`: Use `uintptr_t` values instead of pointers to avoid UB from pointer overflow (when pointer arithmetic wraps around the address space). - `KScheduler::Reload`: `thread->GetOwnerProcess()` can be `nullptr`; avoid calling methods on it in this case. (The existing code returns a garbage reference to a field, which is then passed into `LoadWatchpointArray`, and apparently it's never used, so it's harmless in practice but still triggers UBSan.) - `KAutoObject::Close`: This function calls `this->Destroy()`, which overwrites the beginning of the object with junk (specifically a free list pointer). Then it calls `this->UnregisterWithKernel()`. UBSan complains about a type mismatch because the vtable has been overwritten, and I believe this is indeed UB. `UnregisterWithKernel` also loads `m_kernel` from the 'freed' object, which seems to be technically safe (the overwriting doesn't extend as far as that field), but seems dubious. Switch to a `static` method and load `m_kernel` in advance.
2023-07-01 15:00:39 -07:00
return system.DeviceMemory().GetPointer<u8>(paddr + vaddr);
}
u8 Read8(const Common::ProcessAddress addr) {
return Read<u8>(addr);
}
u16 Read16(const Common::ProcessAddress addr) {
if ((addr & 1) == 0) {
return Read<u16_le>(addr);
} else {
const u32 a{Read<u8>(addr)};
const u32 b{Read<u8>(addr + sizeof(u8))};
return static_cast<u16>((b << 8) | a);
}
}
u32 Read32(const Common::ProcessAddress addr) {
if ((addr & 3) == 0) {
return Read<u32_le>(addr);
} else {
const u32 a{Read16(addr)};
const u32 b{Read16(addr + sizeof(u16))};
return (b << 16) | a;
}
}
u64 Read64(const Common::ProcessAddress addr) {
if ((addr & 7) == 0) {
return Read<u64_le>(addr);
} else {
const u32 a{Read32(addr)};
const u32 b{Read32(addr + sizeof(u32))};
return (static_cast<u64>(b) << 32) | a;
}
}
void Write8(const Common::ProcessAddress addr, const u8 data) {
Write<u8>(addr, data);
}
void Write16(const Common::ProcessAddress addr, const u16 data) {
if ((addr & 1) == 0) {
Write<u16_le>(addr, data);
} else {
Write<u8>(addr, static_cast<u8>(data));
Write<u8>(addr + sizeof(u8), static_cast<u8>(data >> 8));
}
}
void Write32(const Common::ProcessAddress addr, const u32 data) {
if ((addr & 3) == 0) {
Write<u32_le>(addr, data);
} else {
Write16(addr, static_cast<u16>(data));
Write16(addr + sizeof(u16), static_cast<u16>(data >> 16));
}
}
void Write64(const Common::ProcessAddress addr, const u64 data) {
if ((addr & 7) == 0) {
Write<u64_le>(addr, data);
} else {
Write32(addr, static_cast<u32>(data));
Write32(addr + sizeof(u32), static_cast<u32>(data >> 32));
}
}
bool WriteExclusive8(const Common::ProcessAddress addr, const u8 data, const u8 expected) {
return WriteExclusive<u8>(addr, data, expected);
}
bool WriteExclusive16(const Common::ProcessAddress addr, const u16 data, const u16 expected) {
return WriteExclusive<u16_le>(addr, data, expected);
}
bool WriteExclusive32(const Common::ProcessAddress addr, const u32 data, const u32 expected) {
return WriteExclusive<u32_le>(addr, data, expected);
}
bool WriteExclusive64(const Common::ProcessAddress addr, const u64 data, const u64 expected) {
return WriteExclusive<u64_le>(addr, data, expected);
}
std::string ReadCString(Common::ProcessAddress vaddr, std::size_t max_length) {
std::string string;
string.reserve(max_length);
for (std::size_t i = 0; i < max_length; ++i) {
2021-08-05 20:11:14 +00:00
const char c = Read<s8>(vaddr);
if (c == '\0') {
break;
}
string.push_back(c);
++vaddr;
}
string.shrink_to_fit();
return string;
}
2023-07-14 22:19:59 -04:00
bool WalkBlock(const Common::ProcessAddress addr, const std::size_t size, auto on_unmapped,
auto on_memory, auto on_rasterizer, auto increment) {
const auto& page_table = *current_page_table;
std::size_t remaining_size = size;
std::size_t page_index = addr >> YUZU_PAGEBITS;
std::size_t page_offset = addr & YUZU_PAGEMASK;
2023-07-14 22:19:59 -04:00
bool user_accessible = true;
if (!AddressSpaceContains(page_table, addr, size)) [[unlikely]] {
on_unmapped(size, addr);
return false;
}
2021-08-05 20:11:14 +00:00
while (remaining_size) {
const std::size_t copy_amount =
std::min(static_cast<std::size_t>(YUZU_PAGESIZE) - page_offset, remaining_size);
const auto current_vaddr =
static_cast<u64>((page_index << YUZU_PAGEBITS) + page_offset);
const auto [pointer, type] = page_table.pointers[page_index].PointerType();
switch (type) {
case Common::PageType::Unmapped: {
2023-07-14 22:19:59 -04:00
user_accessible = false;
2021-08-05 20:11:14 +00:00
on_unmapped(copy_amount, current_vaddr);
break;
}
case Common::PageType::Memory: {
Fixes and workarounds to make UBSan happier on macOS There are still some other issues not addressed here, but it's a start. Workarounds for false-positive reports: - `RasterizerAccelerated`: Put a gigantic array behind a `unique_ptr`, because UBSan has a [hardcoded limit](https://stackoverflow.com/questions/64531383/c-runtime-error-using-fsanitize-undefined-object-has-a-possibly-invalid-vp) of how big it thinks objects can be, specifically when dealing with offset-to-top values used with multiple inheritance. Hopefully this doesn't have a performance impact. - `QueryCacheBase::QueryCacheBase`: Avoid an operation that UBSan thinks is UB even though it at least arguably isn't. See the link in the comment for more information. Fixes for correct reports: - `PageTable`, `Memory`: Use `uintptr_t` values instead of pointers to avoid UB from pointer overflow (when pointer arithmetic wraps around the address space). - `KScheduler::Reload`: `thread->GetOwnerProcess()` can be `nullptr`; avoid calling methods on it in this case. (The existing code returns a garbage reference to a field, which is then passed into `LoadWatchpointArray`, and apparently it's never used, so it's harmless in practice but still triggers UBSan.) - `KAutoObject::Close`: This function calls `this->Destroy()`, which overwrites the beginning of the object with junk (specifically a free list pointer). Then it calls `this->UnregisterWithKernel()`. UBSan complains about a type mismatch because the vtable has been overwritten, and I believe this is indeed UB. `UnregisterWithKernel` also loads `m_kernel` from the 'freed' object, which seems to be technically safe (the overwriting doesn't extend as far as that field), but seems dubious. Switch to a `static` method and load `m_kernel` in advance.
2023-07-01 15:00:39 -07:00
u8* mem_ptr =
reinterpret_cast<u8*>(pointer + page_offset + (page_index << YUZU_PAGEBITS));
2021-08-05 20:11:14 +00:00
on_memory(copy_amount, mem_ptr);
break;
}
case Common::PageType::DebugMemory: {
u8* const mem_ptr{GetPointerFromDebugMemory(current_vaddr)};
on_memory(copy_amount, mem_ptr);
break;
}
case Common::PageType::RasterizerCachedMemory: {
2021-08-05 20:11:14 +00:00
u8* const host_ptr{GetPointerFromRasterizerCachedMemory(current_vaddr)};
on_rasterizer(current_vaddr, copy_amount, host_ptr);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
2021-08-05 20:11:14 +00:00
increment(copy_amount);
remaining_size -= copy_amount;
}
2023-07-14 22:19:59 -04:00
return user_accessible;
}
2021-08-05 20:11:14 +00:00
template <bool UNSAFE>
2023-07-14 22:19:59 -04:00
bool ReadBlockImpl(const Common::ProcessAddress src_addr, void* dest_buffer,
const std::size_t size) {
return WalkBlock(
src_addr, size,
2021-08-05 20:11:14 +00:00
[src_addr, size, &dest_buffer](const std::size_t copy_amount,
const Common::ProcessAddress current_vaddr) {
LOG_ERROR(HW_Memory,
"Unmapped ReadBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
GetInteger(current_vaddr), GetInteger(src_addr), size);
std::memset(dest_buffer, 0, copy_amount);
2021-08-05 20:11:14 +00:00
},
[&](const std::size_t copy_amount, const u8* const src_ptr) {
std::memcpy(dest_buffer, src_ptr, copy_amount);
2021-08-05 20:11:14 +00:00
},
[&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount,
const u8* const host_ptr) {
2021-08-05 20:29:43 +00:00
if constexpr (!UNSAFE) {
2023-04-30 17:14:06 +02:00
HandleRasterizerDownload(GetInteger(current_vaddr), copy_amount);
2021-08-05 20:11:14 +00:00
}
std::memcpy(dest_buffer, host_ptr, copy_amount);
2021-08-05 20:11:14 +00:00
},
[&](const std::size_t copy_amount) {
2021-08-05 20:11:14 +00:00
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
});
}
2023-07-14 22:19:59 -04:00
bool ReadBlock(const Common::ProcessAddress src_addr, void* dest_buffer,
const std::size_t size) {
2023-07-14 22:19:59 -04:00
return ReadBlockImpl<false>(src_addr, dest_buffer, size);
}
2023-07-14 22:19:59 -04:00
bool ReadBlockUnsafe(const Common::ProcessAddress src_addr, void* dest_buffer,
const std::size_t size) {
2023-07-14 22:19:59 -04:00
return ReadBlockImpl<true>(src_addr, dest_buffer, size);
}
const u8* GetSpan(const VAddr src_addr, const std::size_t size) const {
if (current_page_table->blocks[src_addr >> YUZU_PAGEBITS] ==
current_page_table->blocks[(src_addr + size) >> YUZU_PAGEBITS]) {
return GetPointerSilent(src_addr);
}
return nullptr;
}
u8* GetSpan(const VAddr src_addr, const std::size_t size) {
if (current_page_table->blocks[src_addr >> YUZU_PAGEBITS] ==
current_page_table->blocks[(src_addr + size) >> YUZU_PAGEBITS]) {
return GetPointerSilent(src_addr);
}
return nullptr;
}
2021-08-05 20:11:14 +00:00
template <bool UNSAFE>
2023-07-14 22:19:59 -04:00
bool WriteBlockImpl(const Common::ProcessAddress dest_addr, const void* src_buffer,
const std::size_t size) {
return WalkBlock(
dest_addr, size,
[dest_addr, size](const std::size_t copy_amount,
const Common::ProcessAddress current_vaddr) {
LOG_ERROR(HW_Memory,
"Unmapped WriteBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
GetInteger(current_vaddr), GetInteger(dest_addr), size);
2021-08-05 20:11:14 +00:00
},
[&](const std::size_t copy_amount, u8* const dest_ptr) {
std::memcpy(dest_ptr, src_buffer, copy_amount);
2021-08-05 20:11:14 +00:00
},
[&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount,
u8* const host_ptr) {
2021-08-05 20:29:43 +00:00
if constexpr (!UNSAFE) {
HandleRasterizerWrite(GetInteger(current_vaddr), copy_amount);
2021-08-05 20:11:14 +00:00
}
std::memcpy(host_ptr, src_buffer, copy_amount);
2021-08-05 20:11:14 +00:00
},
[&](const std::size_t copy_amount) {
2021-08-05 20:11:14 +00:00
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
});
}
2023-07-14 22:19:59 -04:00
bool WriteBlock(const Common::ProcessAddress dest_addr, const void* src_buffer,
const std::size_t size) {
2023-07-14 22:19:59 -04:00
return WriteBlockImpl<false>(dest_addr, src_buffer, size);
}
2023-07-14 22:19:59 -04:00
bool WriteBlockUnsafe(const Common::ProcessAddress dest_addr, const void* src_buffer,
const std::size_t size) {
2023-07-14 22:19:59 -04:00
return WriteBlockImpl<true>(dest_addr, src_buffer, size);
}
2023-07-14 22:19:59 -04:00
bool ZeroBlock(const Common::ProcessAddress dest_addr, const std::size_t size) {
return WalkBlock(
dest_addr, size,
[dest_addr, size](const std::size_t copy_amount,
const Common::ProcessAddress current_vaddr) {
LOG_ERROR(HW_Memory,
"Unmapped ZeroBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
GetInteger(current_vaddr), GetInteger(dest_addr), size);
2021-08-05 20:11:14 +00:00
},
[](const std::size_t copy_amount, u8* const dest_ptr) {
std::memset(dest_ptr, 0, copy_amount);
2021-08-05 20:11:14 +00:00
},
[&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount,
u8* const host_ptr) {
HandleRasterizerWrite(GetInteger(current_vaddr), copy_amount);
std::memset(host_ptr, 0, copy_amount);
2021-08-05 20:11:14 +00:00
},
[](const std::size_t copy_amount) {});
}
2023-07-14 22:19:59 -04:00
bool CopyBlock(Common::ProcessAddress dest_addr, Common::ProcessAddress src_addr,
const std::size_t size) {
return WalkBlock(
dest_addr, size,
[&](const std::size_t copy_amount, const Common::ProcessAddress current_vaddr) {
LOG_ERROR(HW_Memory,
"Unmapped CopyBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
GetInteger(current_vaddr), GetInteger(src_addr), size);
2023-07-14 22:19:59 -04:00
ZeroBlock(dest_addr, copy_amount);
2021-08-05 21:09:08 +00:00
},
[&](const std::size_t copy_amount, const u8* const src_ptr) {
2023-07-14 22:19:59 -04:00
WriteBlockImpl<false>(dest_addr, src_ptr, copy_amount);
2021-08-05 21:09:08 +00:00
},
[&](const Common::ProcessAddress current_vaddr, const std::size_t copy_amount,
u8* const host_ptr) {
2023-04-30 17:14:06 +02:00
HandleRasterizerDownload(GetInteger(current_vaddr), copy_amount);
2023-07-14 22:19:59 -04:00
WriteBlockImpl<false>(dest_addr, host_ptr, copy_amount);
2021-08-05 21:09:08 +00:00
},
[&](const std::size_t copy_amount) {
dest_addr += copy_amount;
src_addr += copy_amount;
2021-08-05 21:09:08 +00:00
});
}
template <typename Callback>
2023-07-14 22:19:59 -04:00
Result PerformCacheOperation(Common::ProcessAddress dest_addr, std::size_t size,
Callback&& cb) {
class InvalidMemoryException : public std::exception {};
try {
WalkBlock(
2023-07-14 22:19:59 -04:00
dest_addr, size,
[&](const std::size_t block_size, const Common::ProcessAddress current_vaddr) {
LOG_ERROR(HW_Memory, "Unmapped cache maintenance @ {:#018X}",
GetInteger(current_vaddr));
throw InvalidMemoryException();
},
[&](const std::size_t block_size, u8* const host_ptr) {},
[&](const Common::ProcessAddress current_vaddr, const std::size_t block_size,
u8* const host_ptr) { cb(current_vaddr, block_size); },
[](const std::size_t block_size) {});
} catch (InvalidMemoryException&) {
return Kernel::ResultInvalidCurrentMemory;
}
return ResultSuccess;
}
2023-07-14 22:19:59 -04:00
Result InvalidateDataCache(Common::ProcessAddress dest_addr, std::size_t size) {
auto on_rasterizer = [&](const Common::ProcessAddress current_vaddr,
const std::size_t block_size) {
// dc ivac: Invalidate to point of coherency
// GPU flush -> CPU invalidate
2023-04-30 17:14:06 +02:00
HandleRasterizerDownload(GetInteger(current_vaddr), block_size);
};
2023-07-14 22:19:59 -04:00
return PerformCacheOperation(dest_addr, size, on_rasterizer);
}
2023-07-14 22:19:59 -04:00
Result StoreDataCache(Common::ProcessAddress dest_addr, std::size_t size) {
auto on_rasterizer = [&](const Common::ProcessAddress current_vaddr,
const std::size_t block_size) {
// dc cvac: Store to point of coherency
// CPU flush -> GPU invalidate
HandleRasterizerWrite(GetInteger(current_vaddr), block_size);
};
2023-07-14 22:19:59 -04:00
return PerformCacheOperation(dest_addr, size, on_rasterizer);
}
2023-07-14 22:19:59 -04:00
Result FlushDataCache(Common::ProcessAddress dest_addr, std::size_t size) {
auto on_rasterizer = [&](const Common::ProcessAddress current_vaddr,
const std::size_t block_size) {
// dc civac: Store to point of coherency, and invalidate from cache
// CPU flush -> GPU invalidate
HandleRasterizerWrite(GetInteger(current_vaddr), block_size);
};
2023-07-14 22:19:59 -04:00
return PerformCacheOperation(dest_addr, size, on_rasterizer);
}
void MarkRegionDebug(u64 vaddr, u64 size, bool debug) {
if (vaddr == 0 || !AddressSpaceContains(*current_page_table, vaddr, size)) {
return;
}
if (current_page_table->fastmem_arena) {
const auto perm{debug ? Common::MemoryPermission{}
: Common::MemoryPermission::ReadWrite};
buffer->Protect(vaddr, size, perm);
}
// Iterate over a contiguous CPU address space, marking/unmarking the region.
// The region is at a granularity of CPU pages.
const u64 num_pages = ((vaddr + size - 1) >> YUZU_PAGEBITS) - (vaddr >> YUZU_PAGEBITS) + 1;
for (u64 i = 0; i < num_pages; ++i, vaddr += YUZU_PAGESIZE) {
const Common::PageType page_type{
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Type()};
if (debug) {
// Switch page type to debug if now debug
switch (page_type) {
case Common::PageType::Unmapped:
ASSERT_MSG(false, "Attempted to mark unmapped pages as debug");
break;
case Common::PageType::RasterizerCachedMemory:
case Common::PageType::DebugMemory:
// Page is already marked.
break;
case Common::PageType::Memory:
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store(
Fixes and workarounds to make UBSan happier on macOS There are still some other issues not addressed here, but it's a start. Workarounds for false-positive reports: - `RasterizerAccelerated`: Put a gigantic array behind a `unique_ptr`, because UBSan has a [hardcoded limit](https://stackoverflow.com/questions/64531383/c-runtime-error-using-fsanitize-undefined-object-has-a-possibly-invalid-vp) of how big it thinks objects can be, specifically when dealing with offset-to-top values used with multiple inheritance. Hopefully this doesn't have a performance impact. - `QueryCacheBase::QueryCacheBase`: Avoid an operation that UBSan thinks is UB even though it at least arguably isn't. See the link in the comment for more information. Fixes for correct reports: - `PageTable`, `Memory`: Use `uintptr_t` values instead of pointers to avoid UB from pointer overflow (when pointer arithmetic wraps around the address space). - `KScheduler::Reload`: `thread->GetOwnerProcess()` can be `nullptr`; avoid calling methods on it in this case. (The existing code returns a garbage reference to a field, which is then passed into `LoadWatchpointArray`, and apparently it's never used, so it's harmless in practice but still triggers UBSan.) - `KAutoObject::Close`: This function calls `this->Destroy()`, which overwrites the beginning of the object with junk (specifically a free list pointer). Then it calls `this->UnregisterWithKernel()`. UBSan complains about a type mismatch because the vtable has been overwritten, and I believe this is indeed UB. `UnregisterWithKernel` also loads `m_kernel` from the 'freed' object, which seems to be technically safe (the overwriting doesn't extend as far as that field), but seems dubious. Switch to a `static` method and load `m_kernel` in advance.
2023-07-01 15:00:39 -07:00
0, Common::PageType::DebugMemory);
break;
default:
UNREACHABLE();
}
} else {
// Switch page type to non-debug if now non-debug
switch (page_type) {
case Common::PageType::Unmapped:
ASSERT_MSG(false, "Attempted to mark unmapped pages as non-debug");
break;
case Common::PageType::RasterizerCachedMemory:
case Common::PageType::Memory:
// Don't mess with already non-debug or rasterizer memory.
break;
case Common::PageType::DebugMemory: {
u8* const pointer{GetPointerFromDebugMemory(vaddr & ~YUZU_PAGEMASK)};
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store(
Fixes and workarounds to make UBSan happier on macOS There are still some other issues not addressed here, but it's a start. Workarounds for false-positive reports: - `RasterizerAccelerated`: Put a gigantic array behind a `unique_ptr`, because UBSan has a [hardcoded limit](https://stackoverflow.com/questions/64531383/c-runtime-error-using-fsanitize-undefined-object-has-a-possibly-invalid-vp) of how big it thinks objects can be, specifically when dealing with offset-to-top values used with multiple inheritance. Hopefully this doesn't have a performance impact. - `QueryCacheBase::QueryCacheBase`: Avoid an operation that UBSan thinks is UB even though it at least arguably isn't. See the link in the comment for more information. Fixes for correct reports: - `PageTable`, `Memory`: Use `uintptr_t` values instead of pointers to avoid UB from pointer overflow (when pointer arithmetic wraps around the address space). - `KScheduler::Reload`: `thread->GetOwnerProcess()` can be `nullptr`; avoid calling methods on it in this case. (The existing code returns a garbage reference to a field, which is then passed into `LoadWatchpointArray`, and apparently it's never used, so it's harmless in practice but still triggers UBSan.) - `KAutoObject::Close`: This function calls `this->Destroy()`, which overwrites the beginning of the object with junk (specifically a free list pointer). Then it calls `this->UnregisterWithKernel()`. UBSan complains about a type mismatch because the vtable has been overwritten, and I believe this is indeed UB. `UnregisterWithKernel` also loads `m_kernel` from the 'freed' object, which seems to be technically safe (the overwriting doesn't extend as far as that field), but seems dubious. Switch to a `static` method and load `m_kernel` in advance.
2023-07-01 15:00:39 -07:00
reinterpret_cast<uintptr_t>(pointer) - (vaddr & ~YUZU_PAGEMASK),
Common::PageType::Memory);
break;
}
default:
UNREACHABLE();
}
}
}
}
void RasterizerMarkRegionCached(u64 vaddr, u64 size, bool cached) {
if (vaddr == 0 || !AddressSpaceContains(*current_page_table, vaddr, size)) {
return;
}
2020-01-19 01:49:30 +01:00
if (current_page_table->fastmem_arena) {
Common::MemoryPermission perm{};
if (!Settings::values.use_reactive_flushing.GetValue() || !cached) {
perm |= Common::MemoryPermission::Read;
}
if (!cached) {
perm |= Common::MemoryPermission::Write;
}
buffer->Protect(vaddr, size, perm);
}
2020-01-19 01:49:30 +01:00
// Iterate over a contiguous CPU address space, which corresponds to the specified GPU
// address space, marking the region as un/cached. The region is marked un/cached at a
// granularity of CPU pages, hence why we iterate on a CPU page basis (note: GPU page size
// is different). This assumes the specified GPU address region is contiguous as well.
const u64 num_pages = ((vaddr + size - 1) >> YUZU_PAGEBITS) - (vaddr >> YUZU_PAGEBITS) + 1;
for (u64 i = 0; i < num_pages; ++i, vaddr += YUZU_PAGESIZE) {
const Common::PageType page_type{
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Type()};
if (cached) {
// Switch page type to cached if now cached
switch (page_type) {
case Common::PageType::Unmapped:
// It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping.
break;
case Common::PageType::DebugMemory:
case Common::PageType::Memory:
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store(
Fixes and workarounds to make UBSan happier on macOS There are still some other issues not addressed here, but it's a start. Workarounds for false-positive reports: - `RasterizerAccelerated`: Put a gigantic array behind a `unique_ptr`, because UBSan has a [hardcoded limit](https://stackoverflow.com/questions/64531383/c-runtime-error-using-fsanitize-undefined-object-has-a-possibly-invalid-vp) of how big it thinks objects can be, specifically when dealing with offset-to-top values used with multiple inheritance. Hopefully this doesn't have a performance impact. - `QueryCacheBase::QueryCacheBase`: Avoid an operation that UBSan thinks is UB even though it at least arguably isn't. See the link in the comment for more information. Fixes for correct reports: - `PageTable`, `Memory`: Use `uintptr_t` values instead of pointers to avoid UB from pointer overflow (when pointer arithmetic wraps around the address space). - `KScheduler::Reload`: `thread->GetOwnerProcess()` can be `nullptr`; avoid calling methods on it in this case. (The existing code returns a garbage reference to a field, which is then passed into `LoadWatchpointArray`, and apparently it's never used, so it's harmless in practice but still triggers UBSan.) - `KAutoObject::Close`: This function calls `this->Destroy()`, which overwrites the beginning of the object with junk (specifically a free list pointer). Then it calls `this->UnregisterWithKernel()`. UBSan complains about a type mismatch because the vtable has been overwritten, and I believe this is indeed UB. `UnregisterWithKernel` also loads `m_kernel` from the 'freed' object, which seems to be technically safe (the overwriting doesn't extend as far as that field), but seems dubious. Switch to a `static` method and load `m_kernel` in advance.
2023-07-01 15:00:39 -07:00
0, Common::PageType::RasterizerCachedMemory);
break;
case Common::PageType::RasterizerCachedMemory:
// There can be more than one GPU region mapped per CPU region, so it's common
// that this area is already marked as cached.
break;
default:
UNREACHABLE();
}
} else {
// Switch page type to uncached if now uncached
switch (page_type) {
2021-08-05 20:29:43 +00:00
case Common::PageType::Unmapped: // NOLINT(bugprone-branch-clone)
// It is not necessary for a process to have this region mapped into its address
// space, for example, a system module need not have a VRAM mapping.
2021-08-05 20:29:43 +00:00
break;
case Common::PageType::DebugMemory:
case Common::PageType::Memory:
// There can be more than one GPU region mapped per CPU region, so it's common
// that this area is already unmarked as cached.
break;
case Common::PageType::RasterizerCachedMemory: {
u8* const pointer{GetPointerFromRasterizerCachedMemory(vaddr & ~YUZU_PAGEMASK)};
if (pointer == nullptr) {
// It's possible that this function has been called while updating the
// pagetable after unmapping a VMA. In that case the underlying VMA will no
// longer exist, and we should just leave the pagetable entry blank.
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store(
Fixes and workarounds to make UBSan happier on macOS There are still some other issues not addressed here, but it's a start. Workarounds for false-positive reports: - `RasterizerAccelerated`: Put a gigantic array behind a `unique_ptr`, because UBSan has a [hardcoded limit](https://stackoverflow.com/questions/64531383/c-runtime-error-using-fsanitize-undefined-object-has-a-possibly-invalid-vp) of how big it thinks objects can be, specifically when dealing with offset-to-top values used with multiple inheritance. Hopefully this doesn't have a performance impact. - `QueryCacheBase::QueryCacheBase`: Avoid an operation that UBSan thinks is UB even though it at least arguably isn't. See the link in the comment for more information. Fixes for correct reports: - `PageTable`, `Memory`: Use `uintptr_t` values instead of pointers to avoid UB from pointer overflow (when pointer arithmetic wraps around the address space). - `KScheduler::Reload`: `thread->GetOwnerProcess()` can be `nullptr`; avoid calling methods on it in this case. (The existing code returns a garbage reference to a field, which is then passed into `LoadWatchpointArray`, and apparently it's never used, so it's harmless in practice but still triggers UBSan.) - `KAutoObject::Close`: This function calls `this->Destroy()`, which overwrites the beginning of the object with junk (specifically a free list pointer). Then it calls `this->UnregisterWithKernel()`. UBSan complains about a type mismatch because the vtable has been overwritten, and I believe this is indeed UB. `UnregisterWithKernel` also loads `m_kernel` from the 'freed' object, which seems to be technically safe (the overwriting doesn't extend as far as that field), but seems dubious. Switch to a `static` method and load `m_kernel` in advance.
2023-07-01 15:00:39 -07:00
0, Common::PageType::Unmapped);
} else {
current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Store(
Fixes and workarounds to make UBSan happier on macOS There are still some other issues not addressed here, but it's a start. Workarounds for false-positive reports: - `RasterizerAccelerated`: Put a gigantic array behind a `unique_ptr`, because UBSan has a [hardcoded limit](https://stackoverflow.com/questions/64531383/c-runtime-error-using-fsanitize-undefined-object-has-a-possibly-invalid-vp) of how big it thinks objects can be, specifically when dealing with offset-to-top values used with multiple inheritance. Hopefully this doesn't have a performance impact. - `QueryCacheBase::QueryCacheBase`: Avoid an operation that UBSan thinks is UB even though it at least arguably isn't. See the link in the comment for more information. Fixes for correct reports: - `PageTable`, `Memory`: Use `uintptr_t` values instead of pointers to avoid UB from pointer overflow (when pointer arithmetic wraps around the address space). - `KScheduler::Reload`: `thread->GetOwnerProcess()` can be `nullptr`; avoid calling methods on it in this case. (The existing code returns a garbage reference to a field, which is then passed into `LoadWatchpointArray`, and apparently it's never used, so it's harmless in practice but still triggers UBSan.) - `KAutoObject::Close`: This function calls `this->Destroy()`, which overwrites the beginning of the object with junk (specifically a free list pointer). Then it calls `this->UnregisterWithKernel()`. UBSan complains about a type mismatch because the vtable has been overwritten, and I believe this is indeed UB. `UnregisterWithKernel` also loads `m_kernel` from the 'freed' object, which seems to be technically safe (the overwriting doesn't extend as far as that field), but seems dubious. Switch to a `static` method and load `m_kernel` in advance.
2023-07-01 15:00:39 -07:00
reinterpret_cast<uintptr_t>(pointer) - (vaddr & ~YUZU_PAGEMASK),
Common::PageType::Memory);
}
break;
}
default:
UNREACHABLE();
}
}
}
}
/**
* Maps a region of pages as a specific type.
*
* @param page_table The page table to use to perform the mapping.
* @param base The base address to begin mapping at.
* @param size The total size of the range in bytes.
* @param target The target address to begin mapping from.
* @param type The page type to map the memory as.
*/
void MapPages(Common::PageTable& page_table, Common::ProcessAddress base_address, u64 size,
Common::PhysicalAddress target, Common::PageType type) {
auto base = GetInteger(base_address);
LOG_DEBUG(HW_Memory, "Mapping {:016X} onto {:016X}-{:016X}", GetInteger(target),
base * YUZU_PAGESIZE, (base + size) * YUZU_PAGESIZE);
const auto end = base + size;
ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
base + page_table.pointers.size());
2020-04-08 22:50:46 -04:00
if (!target) {
ASSERT_MSG(type != Common::PageType::Memory,
"Mapping memory page without a pointer @ {:016x}", base * YUZU_PAGESIZE);
2020-04-08 22:50:46 -04:00
while (base != end) {
Fixes and workarounds to make UBSan happier on macOS There are still some other issues not addressed here, but it's a start. Workarounds for false-positive reports: - `RasterizerAccelerated`: Put a gigantic array behind a `unique_ptr`, because UBSan has a [hardcoded limit](https://stackoverflow.com/questions/64531383/c-runtime-error-using-fsanitize-undefined-object-has-a-possibly-invalid-vp) of how big it thinks objects can be, specifically when dealing with offset-to-top values used with multiple inheritance. Hopefully this doesn't have a performance impact. - `QueryCacheBase::QueryCacheBase`: Avoid an operation that UBSan thinks is UB even though it at least arguably isn't. See the link in the comment for more information. Fixes for correct reports: - `PageTable`, `Memory`: Use `uintptr_t` values instead of pointers to avoid UB from pointer overflow (when pointer arithmetic wraps around the address space). - `KScheduler::Reload`: `thread->GetOwnerProcess()` can be `nullptr`; avoid calling methods on it in this case. (The existing code returns a garbage reference to a field, which is then passed into `LoadWatchpointArray`, and apparently it's never used, so it's harmless in practice but still triggers UBSan.) - `KAutoObject::Close`: This function calls `this->Destroy()`, which overwrites the beginning of the object with junk (specifically a free list pointer). Then it calls `this->UnregisterWithKernel()`. UBSan complains about a type mismatch because the vtable has been overwritten, and I believe this is indeed UB. `UnregisterWithKernel` also loads `m_kernel` from the 'freed' object, which seems to be technically safe (the overwriting doesn't extend as far as that field), but seems dubious. Switch to a `static` method and load `m_kernel` in advance.
2023-07-01 15:00:39 -07:00
page_table.pointers[base].Store(0, type);
2020-04-08 22:50:46 -04:00
page_table.backing_addr[base] = 0;
page_table.blocks[base] = 0;
2020-04-08 22:50:46 -04:00
base += 1;
}
} else {
auto orig_base = base;
while (base != end) {
auto host_ptr =
Fixes and workarounds to make UBSan happier on macOS There are still some other issues not addressed here, but it's a start. Workarounds for false-positive reports: - `RasterizerAccelerated`: Put a gigantic array behind a `unique_ptr`, because UBSan has a [hardcoded limit](https://stackoverflow.com/questions/64531383/c-runtime-error-using-fsanitize-undefined-object-has-a-possibly-invalid-vp) of how big it thinks objects can be, specifically when dealing with offset-to-top values used with multiple inheritance. Hopefully this doesn't have a performance impact. - `QueryCacheBase::QueryCacheBase`: Avoid an operation that UBSan thinks is UB even though it at least arguably isn't. See the link in the comment for more information. Fixes for correct reports: - `PageTable`, `Memory`: Use `uintptr_t` values instead of pointers to avoid UB from pointer overflow (when pointer arithmetic wraps around the address space). - `KScheduler::Reload`: `thread->GetOwnerProcess()` can be `nullptr`; avoid calling methods on it in this case. (The existing code returns a garbage reference to a field, which is then passed into `LoadWatchpointArray`, and apparently it's never used, so it's harmless in practice but still triggers UBSan.) - `KAutoObject::Close`: This function calls `this->Destroy()`, which overwrites the beginning of the object with junk (specifically a free list pointer). Then it calls `this->UnregisterWithKernel()`. UBSan complains about a type mismatch because the vtable has been overwritten, and I believe this is indeed UB. `UnregisterWithKernel` also loads `m_kernel` from the 'freed' object, which seems to be technically safe (the overwriting doesn't extend as far as that field), but seems dubious. Switch to a `static` method and load `m_kernel` in advance.
2023-07-01 15:00:39 -07:00
reinterpret_cast<uintptr_t>(system.DeviceMemory().GetPointer<u8>(target)) -
(base << YUZU_PAGEBITS);
auto backing = GetInteger(target) - (base << YUZU_PAGEBITS);
page_table.pointers[base].Store(host_ptr, type);
page_table.backing_addr[base] = backing;
page_table.blocks[base] = orig_base << YUZU_PAGEBITS;
2020-04-08 22:50:46 -04:00
ASSERT_MSG(page_table.pointers[base].Pointer(),
"memory mapping base yield a nullptr within the table");
base += 1;
target += YUZU_PAGESIZE;
}
}
}
2013-09-18 23:52:51 -04:00
[[nodiscard]] u8* GetPointerImpl(u64 vaddr, auto on_unmapped, auto on_rasterizer) const {
// AARCH64 masks the upper 16 bit of all memory accesses
vaddr = vaddr & 0xffffffffffffULL;
if (!AddressSpaceContains(*current_page_table, vaddr, 1)) [[unlikely]] {
on_unmapped();
return nullptr;
}
// Avoid adding any extra logic to this fast-path block
const uintptr_t raw_pointer = current_page_table->pointers[vaddr >> YUZU_PAGEBITS].Raw();
Fixes and workarounds to make UBSan happier on macOS There are still some other issues not addressed here, but it's a start. Workarounds for false-positive reports: - `RasterizerAccelerated`: Put a gigantic array behind a `unique_ptr`, because UBSan has a [hardcoded limit](https://stackoverflow.com/questions/64531383/c-runtime-error-using-fsanitize-undefined-object-has-a-possibly-invalid-vp) of how big it thinks objects can be, specifically when dealing with offset-to-top values used with multiple inheritance. Hopefully this doesn't have a performance impact. - `QueryCacheBase::QueryCacheBase`: Avoid an operation that UBSan thinks is UB even though it at least arguably isn't. See the link in the comment for more information. Fixes for correct reports: - `PageTable`, `Memory`: Use `uintptr_t` values instead of pointers to avoid UB from pointer overflow (when pointer arithmetic wraps around the address space). - `KScheduler::Reload`: `thread->GetOwnerProcess()` can be `nullptr`; avoid calling methods on it in this case. (The existing code returns a garbage reference to a field, which is then passed into `LoadWatchpointArray`, and apparently it's never used, so it's harmless in practice but still triggers UBSan.) - `KAutoObject::Close`: This function calls `this->Destroy()`, which overwrites the beginning of the object with junk (specifically a free list pointer). Then it calls `this->UnregisterWithKernel()`. UBSan complains about a type mismatch because the vtable has been overwritten, and I believe this is indeed UB. `UnregisterWithKernel` also loads `m_kernel` from the 'freed' object, which seems to be technically safe (the overwriting doesn't extend as far as that field), but seems dubious. Switch to a `static` method and load `m_kernel` in advance.
2023-07-01 15:00:39 -07:00
if (const uintptr_t pointer = Common::PageTable::PageInfo::ExtractPointer(raw_pointer)) {
return reinterpret_cast<u8*>(pointer + vaddr);
}
switch (Common::PageTable::PageInfo::ExtractType(raw_pointer)) {
case Common::PageType::Unmapped:
on_unmapped();
return nullptr;
case Common::PageType::Memory:
ASSERT_MSG(false, "Mapped memory page without a pointer @ 0x{:016X}", vaddr);
return nullptr;
case Common::PageType::DebugMemory:
return GetPointerFromDebugMemory(vaddr);
case Common::PageType::RasterizerCachedMemory: {
u8* const host_ptr{GetPointerFromRasterizerCachedMemory(vaddr)};
on_rasterizer();
return host_ptr;
}
default:
UNREACHABLE();
}
return nullptr;
}
[[nodiscard]] u8* GetPointer(const Common::ProcessAddress vaddr) const {
return GetPointerImpl(
GetInteger(vaddr),
[vaddr]() {
LOG_ERROR(HW_Memory, "Unmapped GetPointer @ 0x{:016X}", GetInteger(vaddr));
},
[]() {});
}
[[nodiscard]] u8* GetPointerSilent(const Common::ProcessAddress vaddr) const {
2022-02-19 14:18:02 +01:00
return GetPointerImpl(
GetInteger(vaddr), []() {}, []() {});
2022-02-19 14:18:02 +01:00
}
/**
* Reads a particular data type out of memory at the given virtual address.
*
* @param vaddr The virtual address to read the data type from.
*
* @tparam T The data type to read out of memory. This type *must* be
* trivially copyable, otherwise the behavior of this function
* is undefined.
*
* @returns The instance of T read from the specified virtual address.
*/
template <typename T>
T Read(Common::ProcessAddress vaddr) {
T result = 0;
const u8* const ptr = GetPointerImpl(
GetInteger(vaddr),
[vaddr]() {
LOG_ERROR(HW_Memory, "Unmapped Read{} @ 0x{:016X}", sizeof(T) * 8,
GetInteger(vaddr));
},
2023-05-04 03:16:57 +02:00
[&]() { HandleRasterizerDownload(GetInteger(vaddr), sizeof(T)); });
if (ptr) {
std::memcpy(&result, ptr, sizeof(T));
}
return result;
}
/**
* Writes a particular data type to memory at the given virtual address.
*
* @param vaddr The virtual address to write the data type to.
*
* @tparam T The data type to write to memory. This type *must* be
* trivially copyable, otherwise the behavior of this function
* is undefined.
*/
template <typename T>
void Write(Common::ProcessAddress vaddr, const T data) {
u8* const ptr = GetPointerImpl(
GetInteger(vaddr),
[vaddr, data]() {
2021-08-07 03:03:21 +00:00
LOG_ERROR(HW_Memory, "Unmapped Write{} @ 0x{:016X} = 0x{:016X}", sizeof(T) * 8,
GetInteger(vaddr), static_cast<u64>(data));
},
[&]() { HandleRasterizerWrite(GetInteger(vaddr), sizeof(T)); });
if (ptr) {
std::memcpy(ptr, &data, sizeof(T));
}
}
template <typename T>
bool WriteExclusive(Common::ProcessAddress vaddr, const T data, const T expected) {
u8* const ptr = GetPointerImpl(
GetInteger(vaddr),
[vaddr, data]() {
2021-08-07 03:03:21 +00:00
LOG_ERROR(HW_Memory, "Unmapped WriteExclusive{} @ 0x{:016X} = 0x{:016X}",
sizeof(T) * 8, GetInteger(vaddr), static_cast<u64>(data));
},
[&]() { HandleRasterizerWrite(GetInteger(vaddr), sizeof(T)); });
if (ptr) {
const auto volatile_pointer = reinterpret_cast<volatile T*>(ptr);
return Common::AtomicCompareAndSwap(volatile_pointer, data, expected);
}
return true;
}
bool WriteExclusive128(Common::ProcessAddress vaddr, const u128 data, const u128 expected) {
u8* const ptr = GetPointerImpl(
GetInteger(vaddr),
[vaddr, data]() {
2021-08-07 03:03:21 +00:00
LOG_ERROR(HW_Memory, "Unmapped WriteExclusive128 @ 0x{:016X} = 0x{:016X}{:016X}",
GetInteger(vaddr), static_cast<u64>(data[1]), static_cast<u64>(data[0]));
},
[&]() { HandleRasterizerWrite(GetInteger(vaddr), sizeof(u128)); });
if (ptr) {
const auto volatile_pointer = reinterpret_cast<volatile u64*>(ptr);
return Common::AtomicCompareAndSwap(volatile_pointer, data, expected);
}
return true;
}
void HandleRasterizerDownload(VAddr v_address, size_t size) {
const auto* p = GetPointerImpl(
v_address, []() {}, []() {});
if (!gpu_device_memory) [[unlikely]] {
gpu_device_memory = &system.Host1x().MemoryManager();
}
2023-04-30 17:14:06 +02:00
const size_t core = system.GetCurrentHostThreadID();
auto& current_area = rasterizer_read_areas[core];
2023-12-30 04:37:25 +01:00
gpu_device_memory->ApplyOpOnPointer(p, scratch_buffers[core], [&](DAddr address) {
const DAddr end_address = address + size;
if (current_area.start_address <= address && end_address <= current_area.end_address)
[[likely]] {
return;
}
current_area = system.GPU().OnCPURead(address, size);
});
2023-04-30 17:14:06 +02:00
}
void HandleRasterizerWrite(VAddr v_address, size_t size) {
const auto* p = GetPointerImpl(
v_address, []() {}, []() {});
constexpr size_t sys_core = Core::Hardware::NUM_CPU_CORES - 1;
const size_t core = std::min(system.GetCurrentHostThreadID(),
sys_core); // any other calls threads go to syscore.
if (!gpu_device_memory) [[unlikely]] {
gpu_device_memory = &system.Host1x().MemoryManager();
}
// Guard on sys_core;
if (core == sys_core) [[unlikely]] {
sys_core_guard.lock();
}
SCOPE_EXIT({
if (core == sys_core) [[unlikely]] {
sys_core_guard.unlock();
}
});
2023-12-30 04:37:25 +01:00
gpu_device_memory->ApplyOpOnPointer(p, scratch_buffers[core], [&](DAddr address) {
auto& current_area = rasterizer_write_areas[core];
PAddr subaddress = address >> YUZU_PAGEBITS;
bool do_collection = current_area.last_address == subaddress;
if (!do_collection) [[unlikely]] {
do_collection = system.GPU().OnCPUWrite(address, size);
if (!do_collection) {
return;
}
current_area.last_address = subaddress;
}
gpu_dirty_managers[core].Collect(address, size);
});
}
struct GPUDirtyState {
PAddr last_address;
};
2023-12-30 04:37:25 +01:00
void InvalidateGPUMemory(u8* p, size_t size) {
constexpr size_t sys_core = Core::Hardware::NUM_CPU_CORES - 1;
const size_t core = std::min(system.GetCurrentHostThreadID(),
sys_core); // any other calls threads go to syscore.
if (!gpu_device_memory) [[unlikely]] {
gpu_device_memory = &system.Host1x().MemoryManager();
}
// Guard on sys_core;
if (core == sys_core) [[unlikely]] {
sys_core_guard.lock();
}
SCOPE_EXIT({
if (core == sys_core) [[unlikely]] {
sys_core_guard.unlock();
}
});
auto& gpu = system.GPU();
gpu_device_memory->ApplyOpOnPointer(
p, scratch_buffers[core], [&](DAddr address) { gpu.InvalidateRegion(address, size); });
}
Core::System& system;
Tegra::MaxwellDeviceMemoryManager* gpu_device_memory{};
Common::PageTable* current_page_table = nullptr;
std::array<VideoCore::RasterizerDownloadArea, Core::Hardware::NUM_CPU_CORES>
rasterizer_read_areas{};
std::array<GPUDirtyState, Core::Hardware::NUM_CPU_CORES> rasterizer_write_areas{};
std::array<Common::ScratchBuffer<u32>, Core::Hardware::NUM_CPU_CORES> scratch_buffers{};
std::span<Core::GPUDirtyMemoryManager> gpu_dirty_managers;
std::mutex sys_core_guard;
std::optional<Common::HeapTracker> heap_tracker;
#ifdef __linux__
Common::HeapTracker* buffer{};
#else
Common::HostMemory* buffer{};
#endif
};
2014-04-26 01:27:25 -04:00
Memory::Memory(Core::System& system_) : system{system_} {
Reset();
}
Memory::~Memory() = default;
2016-01-30 18:41:04 +00:00
void Memory::Reset() {
impl = std::make_unique<Impl>(system);
}
void Memory::SetCurrentPageTable(Kernel::KProcess& process) {
impl->SetCurrentPageTable(process);
}
void Memory::MapMemoryRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size,
Common::PhysicalAddress target, Common::MemoryPermission perms,
bool separate_heap) {
impl->MapMemoryRegion(page_table, base, size, target, perms, separate_heap);
}
void Memory::UnmapRegion(Common::PageTable& page_table, Common::ProcessAddress base, u64 size,
bool separate_heap) {
impl->UnmapRegion(page_table, base, size, separate_heap);
}
2016-04-16 18:57:57 -04:00
2023-11-23 11:26:06 +02:00
void Memory::ProtectRegion(Common::PageTable& page_table, Common::ProcessAddress vaddr, u64 size,
Common::MemoryPermission perms) {
impl->ProtectRegion(page_table, GetInteger(vaddr), size, perms);
}
bool Memory::IsValidVirtualAddress(const Common::ProcessAddress vaddr) const {
const auto& page_table = *impl->current_page_table;
const size_t page = vaddr >> YUZU_PAGEBITS;
if (page >= page_table.pointers.size()) {
return false;
}
const auto [pointer, type] = page_table.pointers[page].PointerType();
Fixes and workarounds to make UBSan happier on macOS There are still some other issues not addressed here, but it's a start. Workarounds for false-positive reports: - `RasterizerAccelerated`: Put a gigantic array behind a `unique_ptr`, because UBSan has a [hardcoded limit](https://stackoverflow.com/questions/64531383/c-runtime-error-using-fsanitize-undefined-object-has-a-possibly-invalid-vp) of how big it thinks objects can be, specifically when dealing with offset-to-top values used with multiple inheritance. Hopefully this doesn't have a performance impact. - `QueryCacheBase::QueryCacheBase`: Avoid an operation that UBSan thinks is UB even though it at least arguably isn't. See the link in the comment for more information. Fixes for correct reports: - `PageTable`, `Memory`: Use `uintptr_t` values instead of pointers to avoid UB from pointer overflow (when pointer arithmetic wraps around the address space). - `KScheduler::Reload`: `thread->GetOwnerProcess()` can be `nullptr`; avoid calling methods on it in this case. (The existing code returns a garbage reference to a field, which is then passed into `LoadWatchpointArray`, and apparently it's never used, so it's harmless in practice but still triggers UBSan.) - `KAutoObject::Close`: This function calls `this->Destroy()`, which overwrites the beginning of the object with junk (specifically a free list pointer). Then it calls `this->UnregisterWithKernel()`. UBSan complains about a type mismatch because the vtable has been overwritten, and I believe this is indeed UB. `UnregisterWithKernel` also loads `m_kernel` from the 'freed' object, which seems to be technically safe (the overwriting doesn't extend as far as that field), but seems dubious. Switch to a `static` method and load `m_kernel` in advance.
2023-07-01 15:00:39 -07:00
return pointer != 0 || type == Common::PageType::RasterizerCachedMemory ||
type == Common::PageType::DebugMemory;
}
bool Memory::IsValidVirtualAddressRange(Common::ProcessAddress base, u64 size) const {
Common::ProcessAddress end = base + size;
Common::ProcessAddress page = Common::AlignDown(GetInteger(base), YUZU_PAGESIZE);
for (; page < end; page += YUZU_PAGESIZE) {
if (!IsValidVirtualAddress(page)) {
return false;
}
}
return true;
}
u8* Memory::GetPointer(Common::ProcessAddress vaddr) {
return impl->GetPointer(vaddr);
}
u8* Memory::GetPointerSilent(Common::ProcessAddress vaddr) {
2022-02-19 14:18:02 +01:00
return impl->GetPointerSilent(vaddr);
}
const u8* Memory::GetPointer(Common::ProcessAddress vaddr) const {
return impl->GetPointer(vaddr);
}
u8 Memory::Read8(const Common::ProcessAddress addr) {
return impl->Read8(addr);
}
u16 Memory::Read16(const Common::ProcessAddress addr) {
return impl->Read16(addr);
}
u32 Memory::Read32(const Common::ProcessAddress addr) {
return impl->Read32(addr);
}
u64 Memory::Read64(const Common::ProcessAddress addr) {
return impl->Read64(addr);
}
void Memory::Write8(Common::ProcessAddress addr, u8 data) {
impl->Write8(addr, data);
}
void Memory::Write16(Common::ProcessAddress addr, u16 data) {
impl->Write16(addr, data);
}
void Memory::Write32(Common::ProcessAddress addr, u32 data) {
impl->Write32(addr, data);
}
void Memory::Write64(Common::ProcessAddress addr, u64 data) {
impl->Write64(addr, data);
}
bool Memory::WriteExclusive8(Common::ProcessAddress addr, u8 data, u8 expected) {
return impl->WriteExclusive8(addr, data, expected);
}
bool Memory::WriteExclusive16(Common::ProcessAddress addr, u16 data, u16 expected) {
return impl->WriteExclusive16(addr, data, expected);
}
bool Memory::WriteExclusive32(Common::ProcessAddress addr, u32 data, u32 expected) {
return impl->WriteExclusive32(addr, data, expected);
}
bool Memory::WriteExclusive64(Common::ProcessAddress addr, u64 data, u64 expected) {
return impl->WriteExclusive64(addr, data, expected);
}
bool Memory::WriteExclusive128(Common::ProcessAddress addr, u128 data, u128 expected) {
return impl->WriteExclusive128(addr, data, expected);
}
std::string Memory::ReadCString(Common::ProcessAddress vaddr, std::size_t max_length) {
return impl->ReadCString(vaddr, max_length);
}
2023-07-14 22:19:59 -04:00
bool Memory::ReadBlock(const Common::ProcessAddress src_addr, void* dest_buffer,
const std::size_t size) {
2023-07-14 22:19:59 -04:00
return impl->ReadBlock(src_addr, dest_buffer, size);
}
2023-07-14 22:19:59 -04:00
bool Memory::ReadBlockUnsafe(const Common::ProcessAddress src_addr, void* dest_buffer,
const std::size_t size) {
2023-07-14 22:19:59 -04:00
return impl->ReadBlockUnsafe(src_addr, dest_buffer, size);
}
const u8* Memory::GetSpan(const VAddr src_addr, const std::size_t size) const {
return impl->GetSpan(src_addr, size);
}
u8* Memory::GetSpan(const VAddr src_addr, const std::size_t size) {
return impl->GetSpan(src_addr, size);
}
2023-07-14 22:19:59 -04:00
bool Memory::WriteBlock(const Common::ProcessAddress dest_addr, const void* src_buffer,
const std::size_t size) {
2023-07-14 22:19:59 -04:00
return impl->WriteBlock(dest_addr, src_buffer, size);
}
2023-07-14 22:19:59 -04:00
bool Memory::WriteBlockUnsafe(const Common::ProcessAddress dest_addr, const void* src_buffer,
const std::size_t size) {
2023-07-14 22:19:59 -04:00
return impl->WriteBlockUnsafe(dest_addr, src_buffer, size);
}
2023-07-14 22:19:59 -04:00
bool Memory::CopyBlock(Common::ProcessAddress dest_addr, Common::ProcessAddress src_addr,
const std::size_t size) {
2023-07-14 22:19:59 -04:00
return impl->CopyBlock(dest_addr, src_addr, size);
}
2023-07-14 22:19:59 -04:00
bool Memory::ZeroBlock(Common::ProcessAddress dest_addr, const std::size_t size) {
return impl->ZeroBlock(dest_addr, size);
2022-07-16 23:48:45 +01:00
}
void Memory::SetGPUDirtyManagers(std::span<Core::GPUDirtyMemoryManager> managers) {
impl->gpu_dirty_managers = managers;
}
Result Memory::InvalidateDataCache(Common::ProcessAddress dest_addr, const std::size_t size) {
2023-07-14 22:19:59 -04:00
return impl->InvalidateDataCache(dest_addr, size);
}
Result Memory::StoreDataCache(Common::ProcessAddress dest_addr, const std::size_t size) {
2023-07-14 22:19:59 -04:00
return impl->StoreDataCache(dest_addr, size);
}
Result Memory::FlushDataCache(Common::ProcessAddress dest_addr, const std::size_t size) {
2023-07-14 22:19:59 -04:00
return impl->FlushDataCache(dest_addr, size);
}
void Memory::RasterizerMarkRegionCached(Common::ProcessAddress vaddr, u64 size, bool cached) {
impl->RasterizerMarkRegionCached(GetInteger(vaddr), size, cached);
}
void Memory::MarkRegionDebug(Common::ProcessAddress vaddr, u64 size, bool debug) {
impl->MarkRegionDebug(GetInteger(vaddr), size, debug);
}
bool Memory::InvalidateNCE(Common::ProcessAddress vaddr, size_t size) {
[[maybe_unused]] bool mapped = true;
[[maybe_unused]] bool rasterizer = false;
u8* const ptr = impl->GetPointerImpl(
GetInteger(vaddr),
[&] {
LOG_ERROR(HW_Memory, "Unmapped InvalidateNCE for {} bytes @ {:#x}", size,
GetInteger(vaddr));
mapped = false;
},
2023-12-30 04:37:25 +01:00
[&] { rasterizer = true; });
if (rasterizer) {
impl->InvalidateGPUMemory(ptr, size);
}
#ifdef __linux__
if (!rasterizer && mapped) {
impl->buffer->DeferredMapSeparateHeap(GetInteger(vaddr));
}
#endif
return mapped && ptr != nullptr;
}
bool Memory::InvalidateSeparateHeap(void* fault_address) {
#ifdef __linux__
return impl->buffer->DeferredMapSeparateHeap(static_cast<u8*>(fault_address));
#else
return false;
#endif
}
} // namespace Core::Memory