yuzu-android/src/core/hle/kernel/k_thread.cpp

1058 lines
35 KiB
C++
Raw Normal View History

// Copyright 2021 yuzu Emulator Project
2014-12-16 21:38:14 -08:00
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
2014-05-09 19:11:18 -07:00
#include <algorithm>
#include <cinttypes>
#include <optional>
#include <vector>
2015-05-06 00:06:12 -07:00
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/common_funcs.h"
2015-05-06 00:06:12 -07:00
#include "common/common_types.h"
#include "common/fiber.h"
2015-05-06 00:06:12 -07:00
#include "common/logging/log.h"
#include "common/scope_exit.h"
#include "common/thread_queue_list.h"
#include "core/core.h"
#include "core/cpu_manager.h"
#include "core/hardware_properties.h"
#include "core/hle/kernel/k_condition_variable.h"
2021-04-24 02:40:31 -07:00
#include "core/hle/kernel/k_handle_table.h"
#include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_resource_limit.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/k_thread_queue.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/kernel/time_manager.h"
#include "core/hle/result.h"
#include "core/memory.h"
2014-05-09 19:11:18 -07:00
#ifdef ARCHITECTURE_x86_64
#include "core/arm/dynarmic/arm_dynarmic_32.h"
#include "core/arm/dynarmic/arm_dynarmic_64.h"
#endif
namespace {
static void ResetThreadContext32(Core::ARM_Interface::ThreadContext32& context, u32 stack_top,
u32 entry_point, u32 arg) {
context = {};
context.cpu_registers[0] = arg;
context.cpu_registers[15] = entry_point;
context.cpu_registers[13] = stack_top;
}
static void ResetThreadContext64(Core::ARM_Interface::ThreadContext64& context, VAddr stack_top,
VAddr entry_point, u64 arg) {
context = {};
context.cpu_registers[0] = arg;
context.pc = entry_point;
context.sp = stack_top;
// TODO(merry): Perform a hardware test to determine the below value.
context.fpcr = 0;
}
} // namespace
namespace Kernel {
KThread::KThread(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer{kernel}, activity_pause_lock{kernel} {}
KThread::~KThread() = default;
ResultCode KThread::Initialize(KThreadFunction func, uintptr_t arg, VAddr user_stack_top, s32 prio,
s32 virt_core, KProcess* owner, ThreadType type) {
// Assert parameters are valid.
ASSERT((type == ThreadType::Main) ||
(Svc::HighestThreadPriority <= prio && prio <= Svc::LowestThreadPriority));
ASSERT((owner != nullptr) || (type != ThreadType::User));
ASSERT(0 <= virt_core && virt_core < static_cast<s32>(Common::BitSize<u64>()));
// Convert the virtual core to a physical core.
const s32 phys_core = Core::Hardware::VirtualToPhysicalCoreMap[virt_core];
ASSERT(0 <= phys_core && phys_core < static_cast<s32>(Core::Hardware::NUM_CPU_CORES));
// First, clear the TLS address.
tls_address = {};
// Next, assert things based on the type.
switch (type) {
case ThreadType::Main:
ASSERT(arg == 0);
[[fallthrough]];
case ThreadType::HighPriority:
[[fallthrough]];
case ThreadType::User:
ASSERT(((owner == nullptr) ||
(owner->GetCoreMask() | (1ULL << virt_core)) == owner->GetCoreMask()));
ASSERT(((owner == nullptr) ||
(owner->GetPriorityMask() | (1ULL << prio)) == owner->GetPriorityMask()));
break;
case ThreadType::Kernel:
UNIMPLEMENTED();
break;
default:
UNREACHABLE_MSG("KThread::Initialize: Unknown ThreadType {}", static_cast<u32>(type));
break;
}
2021-01-24 22:55:08 -08:00
thread_type_for_debugging = type;
// Set the ideal core ID and affinity mask.
virtual_ideal_core_id = virt_core;
physical_ideal_core_id = phys_core;
2021-01-24 22:55:08 -08:00
virtual_affinity_mask = 1ULL << virt_core;
physical_affinity_mask.SetAffinity(phys_core, true);
// Set the thread state.
thread_state = (type == ThreadType::Main) ? ThreadState::Runnable : ThreadState::Initialized;
// Set TLS address.
tls_address = 0;
// Set parent and condvar tree.
parent = nullptr;
condvar_tree = nullptr;
// Set sync booleans.
signaled = false;
termination_requested = false;
wait_cancelled = false;
cancellable = false;
// Set core ID and wait result.
core_id = phys_core;
wait_result = ResultNoSynchronizationObject;
// Set priorities.
priority = prio;
base_priority = prio;
// Set sync object and waiting lock to null.
synced_object = nullptr;
// Initialize sleeping queue.
sleeping_queue = nullptr;
// Set suspend flags.
suspend_request_flags = 0;
suspend_allowed_flags = static_cast<u32>(ThreadState::SuspendFlagMask);
// We're neither debug attached, nor are we nesting our priority inheritance.
debug_attached = false;
priority_inheritance_count = 0;
// We haven't been scheduled, and we have done no light IPC.
schedule_count = -1;
last_scheduled_tick = 0;
light_ipc_data = nullptr;
// We're not waiting for a lock, and we haven't disabled migration.
lock_owner = nullptr;
num_core_migration_disables = 0;
// We have no waiters, but we do have an entrypoint.
num_kernel_waiters = 0;
// Set our current core id.
current_core_id = phys_core;
// We haven't released our resource limit hint, and we've spent no time on the cpu.
resource_limit_release_hint = false;
cpu_time = 0;
// Clear our stack parameters.
std::memset(static_cast<void*>(std::addressof(GetStackParameters())), 0,
sizeof(StackParameters));
// Setup the TLS, if needed.
if (type == ThreadType::User) {
tls_address = owner->CreateTLSRegion();
}
// Set parent, if relevant.
if (owner != nullptr) {
parent = owner;
parent->Open();
parent->IncrementThreadCount();
}
// Initialize thread context.
ResetThreadContext64(thread_context_64, user_stack_top, func, arg);
ResetThreadContext32(thread_context_32, static_cast<u32>(user_stack_top),
static_cast<u32>(func), static_cast<u32>(arg));
// Setup the stack parameters.
StackParameters& sp = GetStackParameters();
sp.cur_thread = this;
sp.disable_count = 1;
SetInExceptionHandler();
// Set thread ID.
thread_id = kernel.CreateNewThreadID();
// We initialized!
initialized = true;
// Register ourselves with our parent process.
if (parent != nullptr) {
parent->RegisterThread(this);
if (parent->IsSuspended()) {
RequestSuspend(SuspendType::Process);
2020-03-11 17:44:53 -07:00
}
}
return RESULT_SUCCESS;
}
ResultCode KThread::InitializeThread(KThread* thread, KThreadFunction func, uintptr_t arg,
VAddr user_stack_top, s32 prio, s32 core, KProcess* owner,
ThreadType type, std::function<void(void*)>&& init_func,
void* init_func_parameter) {
// Initialize the thread.
R_TRY(thread->Initialize(func, arg, user_stack_top, prio, core, owner, type));
// Initialize host context.
thread->host_context =
std::make_shared<Common::Fiber>(std::move(init_func), init_func_parameter);
return RESULT_SUCCESS;
}
ResultCode KThread::InitializeDummyThread(KThread* thread) {
return thread->Initialize({}, {}, {}, DefaultThreadPriority, 3, {}, ThreadType::Main);
}
ResultCode KThread::InitializeIdleThread(Core::System& system, KThread* thread, s32 virt_core) {
return InitializeThread(thread, {}, {}, {}, IdleThreadPriority, virt_core, {}, ThreadType::Main,
Core::CpuManager::GetIdleThreadStartFunc(),
system.GetCpuManager().GetStartFuncParamater());
}
ResultCode KThread::InitializeHighPriorityThread(Core::System& system, KThread* thread,
KThreadFunction func, uintptr_t arg,
s32 virt_core) {
return InitializeThread(thread, func, arg, {}, {}, virt_core, nullptr, ThreadType::HighPriority,
Core::CpuManager::GetSuspendThreadStartFunc(),
system.GetCpuManager().GetStartFuncParamater());
}
ResultCode KThread::InitializeUserThread(Core::System& system, KThread* thread,
KThreadFunction func, uintptr_t arg, VAddr user_stack_top,
s32 prio, s32 virt_core, KProcess* owner) {
system.Kernel().GlobalSchedulerContext().AddThread(thread);
return InitializeThread(thread, func, arg, user_stack_top, prio, virt_core, owner,
ThreadType::User, Core::CpuManager::GetGuestThreadStartFunc(),
system.GetCpuManager().GetStartFuncParamater());
}
void KThread::PostDestroy(uintptr_t arg) {
KProcess* owner = reinterpret_cast<KProcess*>(arg & ~1ULL);
const bool resource_limit_release_hint = (arg & 1);
const s64 hint_value = (resource_limit_release_hint ? 0 : 1);
if (owner != nullptr) {
owner->GetResourceLimit()->Release(LimitableResource::Threads, 1, hint_value);
owner->Close();
}
}
void KThread::Finalize() {
// If the thread has an owner process, unregister it.
if (parent != nullptr) {
parent->UnregisterThread(this);
}
// If the thread has a local region, delete it.
if (tls_address != 0) {
parent->FreeTLSRegion(tls_address);
}
// Release any waiters.
{
ASSERT(lock_owner == nullptr);
KScopedSchedulerLock sl{kernel};
auto it = waiter_list.begin();
while (it != waiter_list.end()) {
// The thread shouldn't be a kernel waiter.
it->SetLockOwner(nullptr);
it->SetSyncedObject(nullptr, ResultInvalidState);
it->Wakeup();
it = waiter_list.erase(it);
}
}
// Decrement the parent process's thread count.
if (parent != nullptr) {
parent->DecrementThreadCount();
}
// Perform inherited finalization.
KAutoObjectWithSlabHeapAndContainer<KThread, KSynchronizationObject>::Finalize();
}
bool KThread::IsSignaled() const {
return signaled;
}
void KThread::Wakeup() {
KScopedSchedulerLock sl{kernel};
if (GetState() == ThreadState::Waiting) {
if (sleeping_queue != nullptr) {
sleeping_queue->WakeupThread(this);
} else {
SetState(ThreadState::Runnable);
}
}
}
void KThread::StartTermination() {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Release user exception and unpin, if relevant.
if (parent != nullptr) {
parent->ReleaseUserException(this);
if (parent->GetPinnedThread(GetCurrentCoreId(kernel)) == this) {
parent->UnpinCurrentThread();
}
}
// Set state to terminated.
SetState(ThreadState::Terminated);
// Clear the thread's status as running in parent.
if (parent != nullptr) {
parent->ClearRunningThread(this);
}
// Signal.
signaled = true;
NotifyAvailable();
// Clear previous thread in KScheduler.
KScheduler::ClearPreviousThread(kernel, this);
// Register terminated dpc flag.
RegisterDpc(DpcFlag::Terminated);
// Close the thread.
this->Close();
}
void KThread::Pin() {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Set ourselves as pinned.
GetStackParameters().is_pinned = true;
// Disable core migration.
ASSERT(num_core_migration_disables == 0);
{
++num_core_migration_disables;
// Save our ideal state to restore when we're unpinned.
original_physical_ideal_core_id = physical_ideal_core_id;
original_physical_affinity_mask = physical_affinity_mask;
// Bind ourselves to this core.
const s32 active_core = GetActiveCore();
const s32 current_core = GetCurrentCoreId(kernel);
SetActiveCore(current_core);
physical_ideal_core_id = current_core;
physical_affinity_mask.SetAffinityMask(1ULL << current_core);
if (active_core != current_core || physical_affinity_mask.GetAffinityMask() !=
original_physical_affinity_mask.GetAffinityMask()) {
KScheduler::OnThreadAffinityMaskChanged(kernel, this, original_physical_affinity_mask,
active_core);
}
}
// Disallow performing thread suspension.
{
// Update our allow flags.
suspend_allowed_flags &= ~(1 << (static_cast<u32>(SuspendType::Thread) +
static_cast<u32>(ThreadState::SuspendShift)));
// Update our state.
const ThreadState old_state = thread_state;
thread_state = static_cast<ThreadState>(GetSuspendFlags() |
static_cast<u32>(old_state & ThreadState::Mask));
if (thread_state != old_state) {
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
}
// TODO(bunnei): Update our SVC access permissions.
ASSERT(parent != nullptr);
}
void KThread::Unpin() {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Set ourselves as unpinned.
GetStackParameters().is_pinned = false;
// Enable core migration.
ASSERT(num_core_migration_disables == 1);
{
2021-01-24 22:55:08 -08:00
num_core_migration_disables--;
// Restore our original state.
const KAffinityMask old_mask = physical_affinity_mask;
physical_ideal_core_id = original_physical_ideal_core_id;
physical_affinity_mask = original_physical_affinity_mask;
if (physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
const s32 active_core = GetActiveCore();
if (!physical_affinity_mask.GetAffinity(active_core)) {
if (physical_ideal_core_id >= 0) {
SetActiveCore(physical_ideal_core_id);
} else {
SetActiveCore(static_cast<s32>(
Common::BitSize<u64>() - 1 -
std::countl_zero(physical_affinity_mask.GetAffinityMask())));
}
}
KScheduler::OnThreadAffinityMaskChanged(kernel, this, old_mask, active_core);
}
}
// Allow performing thread suspension (if termination hasn't been requested).
{
// Update our allow flags.
if (!IsTerminationRequested()) {
suspend_allowed_flags |= (1 << (static_cast<u32>(SuspendType::Thread) +
static_cast<u32>(ThreadState::SuspendShift)));
}
// Update our state.
const ThreadState old_state = thread_state;
thread_state = static_cast<ThreadState>(GetSuspendFlags() |
static_cast<u32>(old_state & ThreadState::Mask));
if (thread_state != old_state) {
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
}
// TODO(bunnei): Update our SVC access permissions.
ASSERT(parent != nullptr);
// Resume any threads that began waiting on us while we were pinned.
for (auto it = pinned_waiter_list.begin(); it != pinned_waiter_list.end(); ++it) {
if (it->GetState() == ThreadState::Waiting) {
it->SetState(ThreadState::Runnable);
}
}
}
ResultCode KThread::GetCoreMask(s32* out_ideal_core, u64* out_affinity_mask) {
KScopedSchedulerLock sl{kernel};
// Get the virtual mask.
*out_ideal_core = virtual_ideal_core_id;
*out_affinity_mask = virtual_affinity_mask;
return RESULT_SUCCESS;
}
ResultCode KThread::GetPhysicalCoreMask(s32* out_ideal_core, u64* out_affinity_mask) {
KScopedSchedulerLock sl{kernel};
ASSERT(num_core_migration_disables >= 0);
// Select between core mask and original core mask.
if (num_core_migration_disables == 0) {
*out_ideal_core = physical_ideal_core_id;
*out_affinity_mask = physical_affinity_mask.GetAffinityMask();
} else {
*out_ideal_core = original_physical_ideal_core_id;
*out_affinity_mask = original_physical_affinity_mask.GetAffinityMask();
}
return RESULT_SUCCESS;
}
ResultCode KThread::SetCoreMask(s32 core_id, u64 v_affinity_mask) {
ASSERT(parent != nullptr);
ASSERT(v_affinity_mask != 0);
KScopedLightLock lk{activity_pause_lock};
// Set the core mask.
u64 p_affinity_mask = 0;
{
KScopedSchedulerLock sl{kernel};
ASSERT(num_core_migration_disables >= 0);
// If the core id is no-update magic, preserve the ideal core id.
if (core_id == Svc::IdealCoreNoUpdate) {
core_id = virtual_ideal_core_id;
R_UNLESS(((1ULL << core_id) & v_affinity_mask) != 0, ResultInvalidCombination);
}
// Set the virtual core/affinity mask.
virtual_ideal_core_id = core_id;
virtual_affinity_mask = v_affinity_mask;
// Translate the virtual core to a physical core.
if (core_id >= 0) {
core_id = Core::Hardware::VirtualToPhysicalCoreMap[core_id];
}
// Translate the virtual affinity mask to a physical one.
while (v_affinity_mask != 0) {
const u64 next = std::countr_zero(v_affinity_mask);
v_affinity_mask &= ~(1ULL << next);
p_affinity_mask |= (1ULL << Core::Hardware::VirtualToPhysicalCoreMap[next]);
}
// If we haven't disabled migration, perform an affinity change.
if (num_core_migration_disables == 0) {
const KAffinityMask old_mask = physical_affinity_mask;
// Set our new ideals.
physical_ideal_core_id = core_id;
physical_affinity_mask.SetAffinityMask(p_affinity_mask);
if (physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
const s32 active_core = GetActiveCore();
if (active_core >= 0 && !physical_affinity_mask.GetAffinity(active_core)) {
const s32 new_core = static_cast<s32>(
physical_ideal_core_id >= 0
? physical_ideal_core_id
: Common::BitSize<u64>() - 1 -
std::countl_zero(physical_affinity_mask.GetAffinityMask()));
SetActiveCore(new_core);
}
KScheduler::OnThreadAffinityMaskChanged(kernel, this, old_mask, active_core);
}
} else {
// Otherwise, we edit the original affinity for restoration later.
original_physical_ideal_core_id = core_id;
original_physical_affinity_mask.SetAffinityMask(p_affinity_mask);
}
}
// Update the pinned waiter list.
{
2021-01-24 22:55:08 -08:00
bool retry_update{};
bool thread_is_pinned{};
do {
// Lock the scheduler.
KScopedSchedulerLock sl{kernel};
// Don't do any further management if our termination has been requested.
R_SUCCEED_IF(IsTerminationRequested());
// By default, we won't need to retry.
retry_update = false;
// Check if the thread is currently running.
2021-01-24 22:55:08 -08:00
bool thread_is_current{};
s32 thread_core;
for (thread_core = 0; thread_core < static_cast<s32>(Core::Hardware::NUM_CPU_CORES);
++thread_core) {
if (kernel.Scheduler(thread_core).GetCurrentThread() == this) {
thread_is_current = true;
break;
}
}
// If the thread is currently running, check whether it's no longer allowed under the
// new mask.
if (thread_is_current && ((1ULL << thread_core) & p_affinity_mask) == 0) {
// If the thread is pinned, we want to wait until it's not pinned.
if (GetStackParameters().is_pinned) {
// Verify that the current thread isn't terminating.
R_UNLESS(!GetCurrentThread(kernel).IsTerminationRequested(),
ResultTerminationRequested);
// Note that the thread was pinned.
thread_is_pinned = true;
// Wait until the thread isn't pinned any more.
pinned_waiter_list.push_back(GetCurrentThread(kernel));
GetCurrentThread(kernel).SetState(ThreadState::Waiting);
} else {
// If the thread isn't pinned, release the scheduler lock and retry until it's
// not current.
retry_update = true;
}
}
} while (retry_update);
// If the thread was pinned, it no longer is, and we should remove the current thread from
// our waiter list.
if (thread_is_pinned) {
// Lock the scheduler.
KScopedSchedulerLock sl{kernel};
// Remove from the list.
pinned_waiter_list.erase(pinned_waiter_list.iterator_to(GetCurrentThread(kernel)));
}
}
return RESULT_SUCCESS;
}
void KThread::SetBasePriority(s32 value) {
ASSERT(Svc::HighestThreadPriority <= value && value <= Svc::LowestThreadPriority);
KScopedSchedulerLock sl{kernel};
// Change our base priority.
base_priority = value;
// Perform a priority restoration.
RestorePriority(kernel, this);
}
void KThread::RequestSuspend(SuspendType type) {
KScopedSchedulerLock sl{kernel};
// Note the request in our flags.
suspend_request_flags |=
(1u << (static_cast<u32>(ThreadState::SuspendShift) + static_cast<u32>(type)));
// Try to perform the suspend.
TrySuspend();
}
void KThread::Resume(SuspendType type) {
KScopedSchedulerLock sl{kernel};
// Clear the request in our flags.
suspend_request_flags &=
~(1u << (static_cast<u32>(ThreadState::SuspendShift) + static_cast<u32>(type)));
// Update our state.
const ThreadState old_state = thread_state;
thread_state = static_cast<ThreadState>(GetSuspendFlags() |
static_cast<u32>(old_state & ThreadState::Mask));
if (thread_state != old_state) {
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
}
void KThread::WaitCancel() {
KScopedSchedulerLock sl{kernel};
// Check if we're waiting and cancellable.
if (GetState() == ThreadState::Waiting && cancellable) {
if (sleeping_queue != nullptr) {
sleeping_queue->WakeupThread(this);
wait_cancelled = true;
} else {
SetSyncedObject(nullptr, ResultCancelled);
SetState(ThreadState::Runnable);
wait_cancelled = false;
}
} else {
// Otherwise, note that we cancelled a wait.
wait_cancelled = true;
}
}
void KThread::TrySuspend() {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(IsSuspendRequested());
// Ensure that we have no waiters.
if (GetNumKernelWaiters() > 0) {
return;
}
ASSERT(GetNumKernelWaiters() == 0);
// Perform the suspend.
Suspend();
}
void KThread::Suspend() {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
ASSERT(IsSuspendRequested());
// Set our suspend flags in state.
const auto old_state = thread_state;
thread_state = static_cast<ThreadState>(GetSuspendFlags()) | (old_state & ThreadState::Mask);
// Note the state change in scheduler.
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
void KThread::Continue() {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Clear our suspend flags in state.
const auto old_state = thread_state;
thread_state = old_state & ThreadState::Mask;
// Note the state change in scheduler.
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
ResultCode KThread::SetActivity(Svc::ThreadActivity activity) {
// Lock ourselves.
KScopedLightLock lk(activity_pause_lock);
// Set the activity.
{
// Lock the scheduler.
KScopedSchedulerLock sl{kernel};
// Verify our state.
const auto cur_state = GetState();
R_UNLESS((cur_state == ThreadState::Waiting || cur_state == ThreadState::Runnable),
ResultInvalidState);
// Either pause or resume.
if (activity == Svc::ThreadActivity::Paused) {
// Verify that we're not suspended.
R_UNLESS(!IsSuspendRequested(SuspendType::Thread), ResultInvalidState);
// Suspend.
RequestSuspend(SuspendType::Thread);
} else {
ASSERT(activity == Svc::ThreadActivity::Runnable);
// Verify that we're suspended.
R_UNLESS(IsSuspendRequested(SuspendType::Thread), ResultInvalidState);
// Resume.
Resume(SuspendType::Thread);
}
}
// If the thread is now paused, update the pinned waiter list.
if (activity == Svc::ThreadActivity::Paused) {
2021-01-24 22:55:08 -08:00
bool thread_is_pinned{};
bool thread_is_current{};
do {
// Lock the scheduler.
KScopedSchedulerLock sl{kernel};
// Don't do any further management if our termination has been requested.
R_SUCCEED_IF(IsTerminationRequested());
// Check whether the thread is pinned.
if (GetStackParameters().is_pinned) {
// Verify that the current thread isn't terminating.
R_UNLESS(!GetCurrentThread(kernel).IsTerminationRequested(),
ResultTerminationRequested);
// Note that the thread was pinned and not current.
thread_is_pinned = true;
thread_is_current = false;
// Wait until the thread isn't pinned any more.
pinned_waiter_list.push_back(GetCurrentThread(kernel));
GetCurrentThread(kernel).SetState(ThreadState::Waiting);
} else {
// Check if the thread is currently running.
// If it is, we'll need to retry.
thread_is_current = false;
for (auto i = 0; i < static_cast<s32>(Core::Hardware::NUM_CPU_CORES); ++i) {
if (kernel.Scheduler(i).GetCurrentThread() == this) {
thread_is_current = true;
break;
}
}
}
} while (thread_is_current);
// If the thread was pinned, it no longer is, and we should remove the current thread from
// our waiter list.
if (thread_is_pinned) {
// Lock the scheduler.
KScopedSchedulerLock sl{kernel};
// Remove from the list.
pinned_waiter_list.erase(pinned_waiter_list.iterator_to(GetCurrentThread(kernel)));
}
}
return RESULT_SUCCESS;
}
ResultCode KThread::GetThreadContext3(std::vector<u8>& out) {
// Lock ourselves.
KScopedLightLock lk{activity_pause_lock};
// Get the context.
{
// Lock the scheduler.
KScopedSchedulerLock sl{kernel};
// Verify that we're suspended.
R_UNLESS(IsSuspendRequested(SuspendType::Thread), ResultInvalidState);
// If we're not terminating, get the thread's user context.
if (!IsTerminationRequested()) {
if (parent->Is64BitProcess()) {
// Mask away mode bits, interrupt bits, IL bit, and other reserved bits.
auto context = GetContext64();
context.pstate &= 0xFF0FFE20;
out.resize(sizeof(context));
std::memcpy(out.data(), &context, sizeof(context));
} else {
// Mask away mode bits, interrupt bits, IL bit, and other reserved bits.
auto context = GetContext32();
context.cpsr &= 0xFF0FFE20;
out.resize(sizeof(context));
std::memcpy(out.data(), &context, sizeof(context));
}
}
}
return RESULT_SUCCESS;
}
void KThread::AddWaiterImpl(KThread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Find the right spot to insert the waiter.
auto it = waiter_list.begin();
while (it != waiter_list.end()) {
if (it->GetPriority() > thread->GetPriority()) {
break;
}
it++;
}
// Keep track of how many kernel waiters we have.
if (IsKernelAddressKey(thread->GetAddressKey())) {
ASSERT((num_kernel_waiters++) >= 0);
}
// Insert the waiter.
waiter_list.insert(it, *thread);
thread->SetLockOwner(this);
}
void KThread::RemoveWaiterImpl(KThread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
// Keep track of how many kernel waiters we have.
if (IsKernelAddressKey(thread->GetAddressKey())) {
ASSERT((num_kernel_waiters--) > 0);
}
// Remove the waiter.
waiter_list.erase(waiter_list.iterator_to(*thread));
thread->SetLockOwner(nullptr);
}
void KThread::RestorePriority(KernelCore& kernel, KThread* thread) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
while (true) {
// We want to inherit priority where possible.
s32 new_priority = thread->GetBasePriority();
if (thread->HasWaiters()) {
new_priority = std::min(new_priority, thread->waiter_list.front().GetPriority());
}
// If the priority we would inherit is not different from ours, don't do anything.
if (new_priority == thread->GetPriority()) {
return;
}
// Ensure we don't violate condition variable red black tree invariants.
if (auto* cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
BeforeUpdatePriority(kernel, cv_tree, thread);
}
// Change the priority.
const s32 old_priority = thread->GetPriority();
thread->SetPriority(new_priority);
// Restore the condition variable, if relevant.
if (auto* cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
AfterUpdatePriority(kernel, cv_tree, thread);
}
// Update the scheduler.
KScheduler::OnThreadPriorityChanged(kernel, thread, old_priority);
// Keep the lock owner up to date.
KThread* lock_owner = thread->GetLockOwner();
if (lock_owner == nullptr) {
return;
}
// Update the thread in the lock owner's sorted list, and continue inheriting.
lock_owner->RemoveWaiterImpl(thread);
lock_owner->AddWaiterImpl(thread);
thread = lock_owner;
}
}
void KThread::AddWaiter(KThread* thread) {
AddWaiterImpl(thread);
RestorePriority(kernel, this);
}
void KThread::RemoveWaiter(KThread* thread) {
RemoveWaiterImpl(thread);
RestorePriority(kernel, this);
}
KThread* KThread::RemoveWaiterByKey(s32* out_num_waiters, VAddr key) {
ASSERT(kernel.GlobalSchedulerContext().IsLocked());
s32 num_waiters{};
KThread* next_lock_owner{};
auto it = waiter_list.begin();
while (it != waiter_list.end()) {
if (it->GetAddressKey() == key) {
KThread* thread = std::addressof(*it);
// Keep track of how many kernel waiters we have.
if (IsKernelAddressKey(thread->GetAddressKey())) {
ASSERT((num_kernel_waiters--) > 0);
}
it = waiter_list.erase(it);
// Update the next lock owner.
if (next_lock_owner == nullptr) {
next_lock_owner = thread;
next_lock_owner->SetLockOwner(nullptr);
} else {
next_lock_owner->AddWaiterImpl(thread);
}
num_waiters++;
} else {
it++;
}
}
// Do priority updates, if we have a next owner.
if (next_lock_owner) {
RestorePriority(kernel, this);
RestorePriority(kernel, next_lock_owner);
}
// Return output.
*out_num_waiters = num_waiters;
return next_lock_owner;
}
ResultCode KThread::Run() {
while (true) {
KScopedSchedulerLock lk{kernel};
2020-03-07 08:44:35 -08:00
// If either this thread or the current thread are requesting termination, note it.
R_UNLESS(!IsTerminationRequested(), ResultTerminationRequested);
R_UNLESS(!GetCurrentThread(kernel).IsTerminationRequested(), ResultTerminationRequested);
2020-03-07 08:44:35 -08:00
// Ensure our thread state is correct.
R_UNLESS(GetState() == ThreadState::Initialized, ResultInvalidState);
2020-03-07 08:44:35 -08:00
// If the current thread has been asked to suspend, suspend it and retry.
if (GetCurrentThread(kernel).IsSuspended()) {
GetCurrentThread(kernel).Suspend();
continue;
}
// If we're not a kernel thread and we've been asked to suspend, suspend ourselves.
if (IsUserThread() && IsSuspended()) {
Suspend();
}
// Set our state and finish.
SetState(ThreadState::Runnable);
2020-03-07 08:44:35 -08:00
return RESULT_SUCCESS;
}
}
void KThread::Exit() {
ASSERT(this == GetCurrentThreadPointer(kernel));
// Release the thread resource hint from parent.
if (parent != nullptr) {
parent->GetResourceLimit()->Release(Kernel::LimitableResource::Threads, 0, 1);
resource_limit_release_hint = true;
}
// Perform termination.
{
KScopedSchedulerLock sl{kernel};
// Disallow all suspension.
suspend_allowed_flags = 0;
// Start termination.
StartTermination();
}
}
ResultCode KThread::Sleep(s64 timeout) {
ASSERT(!kernel.GlobalSchedulerContext().IsLocked());
ASSERT(this == GetCurrentThreadPointer(kernel));
ASSERT(timeout > 0);
{
// Setup the scheduling lock and sleep.
KScopedSchedulerLockAndSleep slp{kernel, this, timeout};
// Check if the thread should terminate.
if (IsTerminationRequested()) {
slp.CancelSleep();
return ResultTerminationRequested;
}
// Mark the thread as waiting.
SetState(ThreadState::Waiting);
SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Sleep);
}
// The lock/sleep is done.
// Cancel the timer.
kernel.TimeManager().UnscheduleTimeEvent(this);
return RESULT_SUCCESS;
}
void KThread::SetState(ThreadState state) {
KScopedSchedulerLock sl{kernel};
// Clear debugging state
SetMutexWaitAddressForDebugging({});
SetWaitReasonForDebugging({});
const ThreadState old_state = thread_state;
thread_state =
static_cast<ThreadState>((old_state & ~ThreadState::Mask) | (state & ThreadState::Mask));
if (thread_state != old_state) {
KScheduler::OnThreadStateChanged(kernel, this, old_state);
}
2020-03-07 08:44:35 -08:00
}
std::shared_ptr<Common::Fiber>& KThread::GetHostContext() {
return host_context;
}
KThread* GetCurrentThreadPointer(KernelCore& kernel) {
return kernel.GetCurrentEmuThread();
}
KThread& GetCurrentThread(KernelCore& kernel) {
return *GetCurrentThreadPointer(kernel);
}
s32 GetCurrentCoreId(KernelCore& kernel) {
return GetCurrentThread(kernel).GetCurrentCore();
}
} // namespace Kernel