This function is also supposed to check its given policy type with the
permission of the service itself. This implements the necessary
machinery to unstub these functions.
Policy::User seems to just be basic access (which is probably why vi:u
is restricted to that policy), while the other policy seems to be for
extended abilities regarding which displays can be managed and queried,
so this is assumed to be for a background compositor (which I've named,
appropriately, Policy::Compositor).
There's no real reason this shouldn't be allowed, given some values sent
via a request can be signed. This also makes it less annoying to work
with popping enum values, given an enum class with no type specifier
will work out of the box now.
It's also kind of an oversight to allow popping s64 values, but nothing
else.
This didn't really provide much benefit here, especially since the
subsequent change requires that the behavior for each service's
GetDisplayService differs in a minor detail.
This also arguably makes the services nicer to read, since it gets rid
of an indirection in the class hierarchy.
The kernel allows restricting the total size of the handle table through
the process capability descriptors. Until now, this functionality wasn't
hooked up. With this, the process handle tables become properly restricted.
In the case of metadata-less executables, the handle table will assume
the maximum size is requested, preserving the behavior that existed
before these changes.
This manages two kinds of streaming buffers: one for unified memory
models and one for dedicated GPUs. The first one skips the copy from the
staging buffer to the real buffer, since it creates an unified buffer.
This implementation waits for all fences to finish their operation
before "invalidating". This is suboptimal since it should allocate
another buffer or start searching from the beginning. There is room for
improvement here.
This could also handle AMD's "pinned" memory (a heap with 256 MiB) that
seems to be designed for buffer streaming.
The scheduler abstracts command buffer and fence management with an
interface that's able to do OpenGL-like operations on Vulkan command
buffers.
It returns by value a command buffer and fence that have to be used for
subsequent operations until Flush or Finish is executed, after that the
current execution context (the pair of command buffers and fences) gets
invalidated a new one must be fetched. Thankfully validation layers will
quickly detect if this is skipped throwing an error due to modifications
to a sent command buffer.
The NVFlinger service is already passed into services that need to
guarantee its lifetime, so the BufferQueue instances will already live
as long as they're needed. Making them std::shared_ptr instances in this
case is unnecessary.
Like the previous changes made to the Display struct, this prepares the
Layer struct for changes to its interface. Given Layer will be given
more invariants in the future, we convert it into a class to better
signify that.
With the display and layer structures relocated to the vi service, we
can begin giving these a proper interface before beginning to properly
support the display types.
This converts the display struct into a class and provides it with the
necessary functions to preserve behavior within the NVFlinger class.
* Fixes Unicode Key File Directories
Adds code so that when loading a file it converts to UTF16 first, to
ensure the files can be opened. Code borrowed from FileUtil::Exists.
* Update src/core/crypto/key_manager.cpp
Co-Authored-By: Jungorend <Jungorend@users.noreply.github.com>
* Update src/core/crypto/key_manager.cpp
Co-Authored-By: Jungorend <Jungorend@users.noreply.github.com>
* Using FileUtil instead to be cleaner.
* Update src/core/crypto/key_manager.cpp
Co-Authored-By: Jungorend <Jungorend@users.noreply.github.com>
These are more closely related to the vi service as opposed to the
intermediary nvflinger.
This also places them in their relevant subfolder, as future changes to
these will likely result in subclassing to represent various displays
and services, as they're done within the service itself on hardware.
The reasoning for prefixing the display and layer source files is to
avoid potential clashing if two files with the same name are compiled
(e.g. if 'display.cpp/.h' or 'layer.cpp/.h' is added to another service
at any point), which MSVC will actually warn against. This prevents that
case from occurring.
This also presently coverts the std::array introduced within
f45c25aabacc70861723a7ca1096a677bd987487 back to a std::vector to allow
the forward declaration of the Display type. Forward declaring a type
within a std::vector is allowed since the introduction of N4510
(http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4510.html) by
Zhihao Yuan.
As fetching command list headers and and the list of command headers is a fixed 1:1 relation now, they can be implemented within a single call.
This cleans up the Step() logic quite a bit.
Fetching every u32 from memory leads to a big overhead. So let's fetch all of them as a block if possible.
This reduces the Memory::* calls by the dma_pusher by a factor of 10.