The follow-up to e2457418dae19b889b2ad85255bb95d4cd0e4bff, which
replaces most of the includes in the core header with forward declarations.
This makes it so that if any of the headers the core header was
previously including change, then no one will need to rebuild the bulk
of the core, due to core.h being quite a prevalent inclusion.
This should make turnaround for changes much faster for developers.
core.h is kind of a massive header in terms what it includes within
itself. It includes VFS utilities, kernel headers, file_sys header,
ARM-related headers, etc. This means that changing anything in the
headers included by core.h essentially requires you to rebuild almost
all of core.
Instead, we can modify the System class to use the PImpl idiom, which
allows us to move all of those headers to the cpp file and forward
declare the bulk of the types that would otherwise be included, reducing
compile times. This change specifically only performs the PImpl portion.
As means to pave the way for getting rid of global state within core,
This eliminates kernel global state by removing all globals. Instead
this introduces a KernelCore class which acts as a kernel instance. This
instance lives in the System class, which keeps its lifetime contained
to the lifetime of the System class.
This also forces the kernel types to actually interact with the main
kernel instance itself instead of having transient kernel state placed
all over several translation units, keeping everything together. It also
has a nice consequence of making dependencies much more explicit.
This also makes our initialization a tad bit more correct. Previously we
were creating a kernel process before the actual kernel was initialized,
which doesn't really make much sense.
The KernelCore class itself follows the PImpl idiom, which allows
keeping all the implementation details sealed away from everything else,
which forces the use of the exposed API and allows us to avoid any
unnecessary inclusions within the main kernel header.
Makes the class interface consistent and provides accessors for
obtaining a reference to the memory manager instance.
Given we also return references, this makes our more flimsy uses of
const apparent, given const doesn't propagate through pointers in the
way one would typically expect. This makes our mutable state more
apparent in some places.
Rightnow, in games use GetAvailableLanguageCodes(), there is a WriteBuffer() with size larger than the buffer_size. (Core Critical core\hle\kernel\hle_ipc.cpp:WriteBuffer:296: size (0000000000000088) is greater than buffer_size (0000000000000078))
0x88 = 17(languages) * 8
0x78 = 15(languages) * 8
GetAvailableLanguageCodes() can only support 15 languages.
After firmware 4.0.0 there are 17 supported language instead of 15, to enable this GetAvailableLanguageCodes2() need to be used.
So GetAvailableLanguageCodes() will be caped at 15 languages.
Reference:
http://switchbrew.org/index.php/Settings_services
By having the following TTF files in your yuzu sysdata directory. You can load sharedfonts via TTF files.
FontStandard.ttf
FontChineseSimplified.ttf
FontExtendedChineseSimplified.ttf
FontChineseTraditional.ttf
FontKorean.ttf
FontNintendoExtended.ttf
FontNintendoExtended2.ttf
* Added bfttf loading
We can now load system bfttf fonts from system archives AND shared memory dumps. This allows people who have installed their system nand dumps to yuzu to automatically get shared font support. We also now don't hard code the offsets or the sizes of the shared fonts and it's all calculated for us now.
* Addressed plu fixups
* Style changes for plu
* Fixed logic error for plu and added more error checks.
Gets rid of the potential for C array-to-pointer decay, and also makes
pointer arithmetic to get the end of the copy range unnecessary. We can
just use std::array's begin() and end() member functions.
Avoids the need to rebuild multiple source files if the filesystem code
headers change.
This also gets rid of a few instances of indirect inclusions being
relied upon
We have an overload of WriteBuffer that accepts containers that satisfy
the ContiguousContainer concept, which std::array does, so we only need
to pass in the array itself.
ProfileInfo is quite a large struct in terms of data, and we don't need
to perform a copy in these instances, so we can just pass constant
references instead.
We can use the constructor initializer list and just compare the
contained u128's together instead of comparing each element
individually. Ditto for comparing against an invalid UUID.
Moving a const reference isn't possible, so this just results in a copy
(and given ProfileInfo is composed of trivial types and aggregates, a
move wouldn't really do anything).