These indicate options that alter how a read/write is performed.
Currently we don't need to handle these, as the only one that seems to
be used is for writes, but all the custom options ever seem to do is
immediate flushing, which we already do by default.
Rather than make a full copy of the path, we can just use a string view
and truncate the viewed portion of the string instead of creating a totally
new truncated string.
In several places, we have request parsers where there's nothing to
really parse, simply because the HLE function in question operates on
buffers. In these cases we can just remove these instances altogether.
In the other cases, we can retrieve the relevant members from the parser
and at least log them out, giving them some use.
Applies the override specifier where applicable. In the case of
destructors that are defaulted in their definition, they can
simply be removed.
This also removes the unnecessary inclusions being done in audin_u and
audrec_u, given their close proximity.
For whatever reason, shared memory was being used here instead of
transfer memory, which (quite clearly) will not work based off the name
of the function.
This corrects this wonky usage of shared memory.
Since C++17, the introduction of deduction guides for locking facilities
means that we no longer need to hardcode the mutex type into the locks
themselves, making it easier to switch mutex types, should it ever be
necessary in the future.
Based off RE, most of these structure members are register values, which
makes, sense given this service is used to convey fatal errors.
One member indicates the program entry point address, one is a set of
bit flags used to determine which registers to print, and one member
indicates the architecture type.
The only member that still isn't determined is the final member within
the data structure.
This was initially added to prevent problems from stubbed/not implemented NFC services, but as we never encountered such and as it's only used in a deprecated function anyway, I guess we can just remove it to prevent more clutter of the settings.
These functions act in tandem similar to how a lock or mutex require a
balanced lock()/unlock() sequence.
EnterFatalSection simply increments a counter for how many times it has
been called, while LeaveFatalSection ensures that a previous call to
EnterFatalSection has occured. If a previous call has occurred (the
counter is not zero), then the counter gets decremented as one would
expect. If a previous call has not occurred (the counter is zero), then
an error code is returned.
In some cases, our callbacks were using s64 as a parameter, and in other
cases, they were using an int, which is inconsistent.
To make all callbacks consistent, we can just use an s64 as the type for
late cycles, given it gets rid of the need to cast internally.
While we're at it, also resolve some signed/unsigned conversions that
were occurring related to the callback registration.
Makes it more evident that one is for actual code and one is for actual
data. Mutable and static are less than ideal terms here, because
read-only data is technically not mutable, but we were mapping it with
that label.
This function passes in the desired main applet and library applet
volume levels. We can then just pass those values back within the
relevant volume getter functions, allowing us to unstub those as well.
The initial values for the library and main applet volumes differ. The
main applet volume is 0.25 by default, while the library applet volume
is initialized to 1.0 by default in the services themselves.
With this, all kernel objects finally have all of their data members
behind an interface, making it nicer to reason about interactions with
other code (as external code no longer has the freedom to totally alter
internals and potentially messing up invariants).