Eliminates the need to rebuild some source files if the file_util header
ever changes. This also uncovered some indirect inclusions, which have
also been fixed.
Now that we have a class representing the kernel in some capacity, we
now have a place to put the named port map, so we move it over and get
rid of another piece of global state within the core.
This isn't required to be visible to anything outside of the main source
file, and will eliminate needing to rebuild anything else including the
header if the SSL class needs to be changed in the future.
The follow-up to e2457418dae19b889b2ad85255bb95d4cd0e4bff, which
replaces most of the includes in the core header with forward declarations.
This makes it so that if any of the headers the core header was
previously including change, then no one will need to rebuild the bulk
of the core, due to core.h being quite a prevalent inclusion.
This should make turnaround for changes much faster for developers.
core.h is kind of a massive header in terms what it includes within
itself. It includes VFS utilities, kernel headers, file_sys header,
ARM-related headers, etc. This means that changing anything in the
headers included by core.h essentially requires you to rebuild almost
all of core.
Instead, we can modify the System class to use the PImpl idiom, which
allows us to move all of those headers to the cpp file and forward
declare the bulk of the types that would otherwise be included, reducing
compile times. This change specifically only performs the PImpl portion.
As means to pave the way for getting rid of global state within core,
This eliminates kernel global state by removing all globals. Instead
this introduces a KernelCore class which acts as a kernel instance. This
instance lives in the System class, which keeps its lifetime contained
to the lifetime of the System class.
This also forces the kernel types to actually interact with the main
kernel instance itself instead of having transient kernel state placed
all over several translation units, keeping everything together. It also
has a nice consequence of making dependencies much more explicit.
This also makes our initialization a tad bit more correct. Previously we
were creating a kernel process before the actual kernel was initialized,
which doesn't really make much sense.
The KernelCore class itself follows the PImpl idiom, which allows
keeping all the implementation details sealed away from everything else,
which forces the use of the exposed API and allows us to avoid any
unnecessary inclusions within the main kernel header.
Makes the class interface consistent and provides accessors for
obtaining a reference to the memory manager instance.
Given we also return references, this makes our more flimsy uses of
const apparent, given const doesn't propagate through pointers in the
way one would typically expect. This makes our mutable state more
apparent in some places.
Many containers within the standard library provide different behaviors
based on whether or not a move constructor/assignment operator can be
guaranteed not to throw or not.
Notably, implementations will generally use std::move_if_noexcept (or an
internal implementation of it) to provide strong exception guarantees.
If a move constructor potentially throws (in other words, is not
noexcept), then certain behaviors will create copies, rather than moving
the values.
For example, consider std::vector. When a std::vector calls resize(),
there are two ways the elements can be relocated to the new block of
memory (if a reallocation happens), by copy, or by moving the existing
elements into the new block of memory. If a type does not have a
guarantee that it will not throw in the move constructor, a copy will
happen. However, if it can be guaranteed that the move constructor won't
throw, then the elements will be moved.
This just allows ResultVal to be moved instead of copied all the time if
ever used in conjunction with containers for whatever reason.