// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include "common/bit_field.h" #include "common/microprofile.h" #include "core/memory.h" #include "core/hle/kernel/event.h" #include "core/hle/kernel/shared_memory.h" #include "core/hle/result.h" #include "core/hw/hw.h" #include "core/hw/gpu.h" #include "core/hw/lcd.h" #include "video_core/gpu_debugger.h" #include "video_core/debug_utils/debug_utils.h" #include "video_core/renderer_base.h" #include "video_core/video_core.h" #include "gsp_gpu.h" // Main graphics debugger object - TODO: Here is probably not the best place for this GraphicsDebugger g_debugger; // Beginning address of HW regs const static u32 REGS_BEGIN = 0x1EB00000; //////////////////////////////////////////////////////////////////////////////////////////////////// // Namespace GSP_GPU namespace GSP_GPU { const ResultCode ERR_GSP_REGS_OUTOFRANGE_OR_MISALIGNED(ErrorDescription::OutofRangeOrMisalignedAddress, ErrorModule::GX, ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E02A01 const ResultCode ERR_GSP_REGS_MISALIGNED(ErrorDescription::MisalignedSize, ErrorModule::GX, ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E02BF2 const ResultCode ERR_GSP_REGS_INVALID_SIZE(ErrorDescription::InvalidSize, ErrorModule::GX, ErrorSummary::InvalidArgument, ErrorLevel::Usage); // 0xE0E02BEC /// Event triggered when GSP interrupt has been signalled Kernel::SharedPtr g_interrupt_event; /// GSP shared memoryings Kernel::SharedPtr g_shared_memory; /// Thread index into interrupt relay queue u32 g_thread_id = 0; /// Gets a pointer to a thread command buffer in GSP shared memory static inline u8* GetCommandBuffer(u32 thread_id) { return g_shared_memory->GetPointer(0x800 + (thread_id * sizeof(CommandBuffer))); } FrameBufferUpdate* GetFrameBufferInfo(u32 thread_id, u32 screen_index) { DEBUG_ASSERT_MSG(screen_index < 2, "Invalid screen index"); // For each thread there are two FrameBufferUpdate fields u32 offset = 0x200 + (2 * thread_id + screen_index) * sizeof(FrameBufferUpdate); u8* ptr = g_shared_memory->GetPointer(offset); return reinterpret_cast(ptr); } /// Gets a pointer to the interrupt relay queue for a given thread index static inline InterruptRelayQueue* GetInterruptRelayQueue(u32 thread_id) { u8* ptr = g_shared_memory->GetPointer(sizeof(InterruptRelayQueue) * thread_id); return reinterpret_cast(ptr); } /** * Writes sequential GSP GPU hardware registers using an array of source data * * @param base_address The address of the first register in the sequence * @param size_in_bytes The number of registers to update (size of data) * @param data A pointer to the source data * @return RESULT_SUCCESS if the parameters are valid, error code otherwise */ static ResultCode WriteHWRegs(u32 base_address, u32 size_in_bytes, const u32* data) { // This magic number is verified to be done by the gsp module const u32 max_size_in_bytes = 0x80; if (base_address & 3 || base_address >= 0x420000) { LOG_ERROR(Service_GSP, "Write address was out of range or misaligned! (address=0x%08x, size=0x%08x)", base_address, size_in_bytes); return ERR_GSP_REGS_OUTOFRANGE_OR_MISALIGNED; } else if (size_in_bytes <= max_size_in_bytes) { if (size_in_bytes & 3) { LOG_ERROR(Service_GSP, "Misaligned size 0x%08x", size_in_bytes); return ERR_GSP_REGS_MISALIGNED; } else { while (size_in_bytes > 0) { HW::Write(base_address + REGS_BEGIN, *data); size_in_bytes -= 4; ++data; base_address += 4; } return RESULT_SUCCESS; } } else { LOG_ERROR(Service_GSP, "Out of range size 0x%08x", size_in_bytes); return ERR_GSP_REGS_INVALID_SIZE; } } /** * Updates sequential GSP GPU hardware registers using parallel arrays of source data and masks. * For each register, the value is updated only where the mask is high * * @param base_address The address of the first register in the sequence * @param size_in_bytes The number of registers to update (size of data) * @param data A pointer to the source data to use for updates * @param masks A pointer to the masks * @return RESULT_SUCCESS if the parameters are valid, error code otherwise */ static ResultCode WriteHWRegsWithMask(u32 base_address, u32 size_in_bytes, const u32* data, const u32* masks) { // This magic number is verified to be done by the gsp module const u32 max_size_in_bytes = 0x80; if (base_address & 3 || base_address >= 0x420000) { LOG_ERROR(Service_GSP, "Write address was out of range or misaligned! (address=0x%08x, size=0x%08x)", base_address, size_in_bytes); return ERR_GSP_REGS_OUTOFRANGE_OR_MISALIGNED; } else if (size_in_bytes <= max_size_in_bytes) { if (size_in_bytes & 3) { LOG_ERROR(Service_GSP, "Misaligned size 0x%08x", size_in_bytes); return ERR_GSP_REGS_MISALIGNED; } else { while (size_in_bytes > 0) { const u32 reg_address = base_address + REGS_BEGIN; u32 reg_value; HW::Read(reg_value, reg_address); // Update the current value of the register only for set mask bits reg_value = (reg_value & ~*masks) | (*data | *masks); HW::Write(reg_address, reg_value); size_in_bytes -= 4; ++data; ++masks; base_address += 4; } return RESULT_SUCCESS; } } else { LOG_ERROR(Service_GSP, "Out of range size 0x%08x", size_in_bytes); return ERR_GSP_REGS_INVALID_SIZE; } } /** * GSP_GPU::WriteHWRegs service function * * Writes sequential GSP GPU hardware registers * * Inputs: * 1 : address of first GPU register * 2 : number of registers to write sequentially * 4 : pointer to source data array */ static void WriteHWRegs(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 reg_addr = cmd_buff[1]; u32 size = cmd_buff[2]; u32* src = (u32*)Memory::GetPointer(cmd_buff[4]); cmd_buff[1] = WriteHWRegs(reg_addr, size, src).raw; } /** * GSP_GPU::WriteHWRegsWithMask service function * * Updates sequential GSP GPU hardware registers using masks * * Inputs: * 1 : address of first GPU register * 2 : number of registers to update sequentially * 4 : pointer to source data array * 6 : pointer to mask array */ static void WriteHWRegsWithMask(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 reg_addr = cmd_buff[1]; u32 size = cmd_buff[2]; u32* src_data = (u32*)Memory::GetPointer(cmd_buff[4]); u32* mask_data = (u32*)Memory::GetPointer(cmd_buff[6]); cmd_buff[1] = WriteHWRegsWithMask(reg_addr, size, src_data, mask_data).raw; } /// Read a GSP GPU hardware register static void ReadHWRegs(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 reg_addr = cmd_buff[1]; u32 size = cmd_buff[2]; // TODO: Return proper error codes if (reg_addr + size >= 0x420000) { LOG_ERROR(Service_GSP, "Read address out of range! (address=0x%08x, size=0x%08x)", reg_addr, size); return; } // size should be word-aligned if ((size % 4) != 0) { LOG_ERROR(Service_GSP, "Invalid size 0x%08x", size); return; } u32* dst = (u32*)Memory::GetPointer(cmd_buff[0x41]); while (size > 0) { HW::Read(*dst, reg_addr + REGS_BEGIN); size -= 4; ++dst; reg_addr += 4; } } ResultCode SetBufferSwap(u32 screen_id, const FrameBufferInfo& info) { u32 base_address = 0x400000; PAddr phys_address_left = Memory::VirtualToPhysicalAddress(info.address_left); PAddr phys_address_right = Memory::VirtualToPhysicalAddress(info.address_right); if (info.active_fb == 0) { WriteHWRegs(base_address + 4 * static_cast(GPU_REG_INDEX(framebuffer_config[screen_id].address_left1)), 4, &phys_address_left); WriteHWRegs(base_address + 4 * static_cast(GPU_REG_INDEX(framebuffer_config[screen_id].address_right1)), 4, &phys_address_right); } else { WriteHWRegs(base_address + 4 * static_cast(GPU_REG_INDEX(framebuffer_config[screen_id].address_left2)), 4, &phys_address_left); WriteHWRegs(base_address + 4 * static_cast(GPU_REG_INDEX(framebuffer_config[screen_id].address_right2)), 4, &phys_address_right); } WriteHWRegs(base_address + 4 * static_cast(GPU_REG_INDEX(framebuffer_config[screen_id].stride)), 4, &info.stride); WriteHWRegs(base_address + 4 * static_cast(GPU_REG_INDEX(framebuffer_config[screen_id].color_format)), 4, &info.format); WriteHWRegs(base_address + 4 * static_cast(GPU_REG_INDEX(framebuffer_config[screen_id].active_fb)), 4, &info.shown_fb); if (Pica::g_debug_context) Pica::g_debug_context->OnEvent(Pica::DebugContext::Event::BufferSwapped, nullptr); if (screen_id == 0) { MicroProfileFlip(); } return RESULT_SUCCESS; } /** * GSP_GPU::SetBufferSwap service function * * Updates GPU display framebuffer configuration using the specified parameters. * * Inputs: * 1 : Screen ID (0 = top screen, 1 = bottom screen) * 2-7 : FrameBufferInfo structure * Outputs: * 1: Result code */ static void SetBufferSwap(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 screen_id = cmd_buff[1]; FrameBufferInfo* fb_info = (FrameBufferInfo*)&cmd_buff[2]; cmd_buff[1] = SetBufferSwap(screen_id, *fb_info).raw; } /** * GSP_GPU::FlushDataCache service function * * This Function is a no-op, We aren't emulating the CPU cache any time soon. * * Inputs: * 1 : Address * 2 : Size * 3 : Value 0, some descriptor for the KProcess Handle * 4 : KProcess handle * Outputs: * 1 : Result of function, 0 on success, otherwise error code */ static void FlushDataCache(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 address = cmd_buff[1]; u32 size = cmd_buff[2]; u32 process = cmd_buff[4]; VideoCore::g_renderer->Rasterizer()->InvalidateRegion(Memory::VirtualToPhysicalAddress(address), size); // TODO(purpasmart96): Verify return header on HW cmd_buff[1] = RESULT_SUCCESS.raw; // No error LOG_DEBUG(Service_GSP, "(STUBBED) called address=0x%08X, size=0x%08X, process=0x%08X", address, size, process); } /** * GSP_GPU::RegisterInterruptRelayQueue service function * Inputs: * 1 : "Flags" field, purpose is unknown * 3 : Handle to GSP synchronization event * Outputs: * 1 : Result of function, 0x2A07 on success, otherwise error code * 2 : Thread index into GSP command buffer * 4 : Handle to GSP shared memory */ static void RegisterInterruptRelayQueue(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 flags = cmd_buff[1]; g_interrupt_event = Kernel::g_handle_table.Get(cmd_buff[3]); ASSERT_MSG((g_interrupt_event != nullptr), "handle is not valid!"); Handle shmem_handle = Kernel::g_handle_table.Create(g_shared_memory).MoveFrom(); // This specific code is required for a successful initialization, rather than 0 cmd_buff[1] = ResultCode((ErrorDescription)519, ErrorModule::GX, ErrorSummary::Success, ErrorLevel::Success).raw; cmd_buff[2] = g_thread_id++; // Thread ID cmd_buff[4] = shmem_handle; // GSP shared memory g_interrupt_event->Signal(); // TODO(bunnei): Is this correct? } /** * Signals that the specified interrupt type has occurred to userland code * @param interrupt_id ID of interrupt that is being signalled * @todo This should probably take a thread_id parameter and only signal this thread? * @todo This probably does not belong in the GSP module, instead move to video_core */ void SignalInterrupt(InterruptId interrupt_id) { if (nullptr == g_interrupt_event) { LOG_WARNING(Service_GSP, "cannot synchronize until GSP event has been created!"); return; } if (nullptr == g_shared_memory) { LOG_WARNING(Service_GSP, "cannot synchronize until GSP shared memory has been created!"); return; } for (int thread_id = 0; thread_id < 0x4; ++thread_id) { InterruptRelayQueue* interrupt_relay_queue = GetInterruptRelayQueue(thread_id); u8 next = interrupt_relay_queue->index; next += interrupt_relay_queue->number_interrupts; next = next % 0x34; // 0x34 is the number of interrupt slots interrupt_relay_queue->number_interrupts += 1; interrupt_relay_queue->slot[next] = interrupt_id; interrupt_relay_queue->error_code = 0x0; // No error // Update framebuffer information if requested // TODO(yuriks): Confirm where this code should be called. It is definitely updated without // executing any GSP commands, only waiting on the event. int screen_id = (interrupt_id == InterruptId::PDC0) ? 0 : (interrupt_id == InterruptId::PDC1) ? 1 : -1; if (screen_id != -1) { FrameBufferUpdate* info = GetFrameBufferInfo(thread_id, screen_id); if (info->is_dirty) { SetBufferSwap(screen_id, info->framebuffer_info[info->index]); info->is_dirty.Assign(false); } } } g_interrupt_event->Signal(); } /// Executes the next GSP command static void ExecuteCommand(const Command& command, u32 thread_id) { // Utility function to convert register ID to address static auto WriteGPURegister = [](u32 id, u32 data) { GPU::Write(0x1EF00000 + 4 * id, data); }; switch (command.id) { // GX request DMA - typically used for copying memory from GSP heap to VRAM case CommandId::REQUEST_DMA: VideoCore::g_renderer->Rasterizer()->FlushRegion(Memory::VirtualToPhysicalAddress(command.dma_request.source_address), command.dma_request.size); memcpy(Memory::GetPointer(command.dma_request.dest_address), Memory::GetPointer(command.dma_request.source_address), command.dma_request.size); SignalInterrupt(InterruptId::DMA); VideoCore::g_renderer->Rasterizer()->InvalidateRegion(Memory::VirtualToPhysicalAddress(command.dma_request.dest_address), command.dma_request.size); break; // TODO: This will need some rework in the future. (why?) case CommandId::SUBMIT_GPU_CMDLIST: { auto& params = command.submit_gpu_cmdlist; if (params.do_flush) { // This flag flushes the command list (params.address, params.size) from the cache. // Command lists are not processed by the hardware renderer, so we don't need to // actually flush them in Citra. } WriteGPURegister(static_cast(GPU_REG_INDEX(command_processor_config.address)), Memory::VirtualToPhysicalAddress(params.address) >> 3); WriteGPURegister(static_cast(GPU_REG_INDEX(command_processor_config.size)), params.size); // TODO: Not sure if we are supposed to always write this .. seems to trigger processing though WriteGPURegister(static_cast(GPU_REG_INDEX(command_processor_config.trigger)), 1); // TODO(yuriks): Figure out the meaning of the `flags` field. break; } // It's assumed that the two "blocks" behave equivalently. // Presumably this is done simply to allow two memory fills to run in parallel. case CommandId::SET_MEMORY_FILL: { auto& params = command.memory_fill; if (params.start1 != 0) { WriteGPURegister(static_cast(GPU_REG_INDEX(memory_fill_config[0].address_start)), Memory::VirtualToPhysicalAddress(params.start1) >> 3); WriteGPURegister(static_cast(GPU_REG_INDEX(memory_fill_config[0].address_end)), Memory::VirtualToPhysicalAddress(params.end1) >> 3); WriteGPURegister(static_cast(GPU_REG_INDEX(memory_fill_config[0].value_32bit)), params.value1); WriteGPURegister(static_cast(GPU_REG_INDEX(memory_fill_config[0].control)), params.control1); } if (params.start2 != 0) { WriteGPURegister(static_cast(GPU_REG_INDEX(memory_fill_config[1].address_start)), Memory::VirtualToPhysicalAddress(params.start2) >> 3); WriteGPURegister(static_cast(GPU_REG_INDEX(memory_fill_config[1].address_end)), Memory::VirtualToPhysicalAddress(params.end2) >> 3); WriteGPURegister(static_cast(GPU_REG_INDEX(memory_fill_config[1].value_32bit)), params.value2); WriteGPURegister(static_cast(GPU_REG_INDEX(memory_fill_config[1].control)), params.control2); } break; } case CommandId::SET_DISPLAY_TRANSFER: { auto& params = command.display_transfer; WriteGPURegister(static_cast(GPU_REG_INDEX(display_transfer_config.input_address)), Memory::VirtualToPhysicalAddress(params.in_buffer_address) >> 3); WriteGPURegister(static_cast(GPU_REG_INDEX(display_transfer_config.output_address)), Memory::VirtualToPhysicalAddress(params.out_buffer_address) >> 3); WriteGPURegister(static_cast(GPU_REG_INDEX(display_transfer_config.input_size)), params.in_buffer_size); WriteGPURegister(static_cast(GPU_REG_INDEX(display_transfer_config.output_size)), params.out_buffer_size); WriteGPURegister(static_cast(GPU_REG_INDEX(display_transfer_config.flags)), params.flags); WriteGPURegister(static_cast(GPU_REG_INDEX(display_transfer_config.trigger)), 1); break; } case CommandId::SET_TEXTURE_COPY: { auto& params = command.texture_copy; WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.input_address), Memory::VirtualToPhysicalAddress(params.in_buffer_address) >> 3); WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.output_address), Memory::VirtualToPhysicalAddress(params.out_buffer_address) >> 3); WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.texture_copy.size), params.size); WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.texture_copy.input_size), params.in_width_gap); WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.texture_copy.output_size), params.out_width_gap); WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.flags), params.flags); // NOTE: Actual GSP ORs 1 with current register instead of overwriting. Doesn't seem to matter. WriteGPURegister((u32)GPU_REG_INDEX(display_transfer_config.trigger), 1); break; } case CommandId::CACHE_FLUSH: { for (auto& region : command.cache_flush.regions) { if (region.size == 0) break; VideoCore::g_renderer->Rasterizer()->InvalidateRegion( Memory::VirtualToPhysicalAddress(region.address), region.size); } break; } default: LOG_ERROR(Service_GSP, "unknown command 0x%08X", (int)command.id.Value()); } if (Pica::g_debug_context) Pica::g_debug_context->OnEvent(Pica::DebugContext::Event::GSPCommandProcessed, (void*)&command); } /** * GSP_GPU::SetLcdForceBlack service function * * Enable or disable REG_LCDCOLORFILL with the color black. * * Inputs: * 1: Black color fill flag (0 = don't fill, !0 = fill) * Outputs: * 1: Result code */ static void SetLcdForceBlack(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); bool enable_black = cmd_buff[1] != 0; LCD::Regs::ColorFill data = {0}; // Since data is already zeroed, there is no need to explicitly set // the color to black (all zero). data.is_enabled.Assign(enable_black); LCD::Write(HW::VADDR_LCD + 4 * LCD_REG_INDEX(color_fill_top), data.raw); // Top LCD LCD::Write(HW::VADDR_LCD + 4 * LCD_REG_INDEX(color_fill_bottom), data.raw); // Bottom LCD cmd_buff[1] = RESULT_SUCCESS.raw; } /// This triggers handling of the GX command written to the command buffer in shared memory. static void TriggerCmdReqQueue(Service::Interface* self) { // Iterate through each thread's command queue... for (unsigned thread_id = 0; thread_id < 0x4; ++thread_id) { CommandBuffer* command_buffer = (CommandBuffer*)GetCommandBuffer(thread_id); // Iterate through each command... for (unsigned i = 0; i < command_buffer->number_commands; ++i) { g_debugger.GXCommandProcessed((u8*)&command_buffer->commands[i]); // Decode and execute command ExecuteCommand(command_buffer->commands[i], thread_id); // Indicates that command has completed command_buffer->number_commands.Assign(command_buffer->number_commands - 1); } } u32* cmd_buff = Kernel::GetCommandBuffer(); cmd_buff[1] = 0; // No error } /** * GSP_GPU::ImportDisplayCaptureInfo service function * * Returns information about the current framebuffer state * * Inputs: * 0: Header 0x00180000 * Outputs: * 1: Result code * 2: Left framebuffer virtual address for the main screen * 3: Right framebuffer virtual address for the main screen * 4: Main screen framebuffer format * 5: Main screen framebuffer width * 6: Left framebuffer virtual address for the bottom screen * 7: Right framebuffer virtual address for the bottom screen * 8: Bottom screen framebuffer format * 9: Bottom screen framebuffer width */ static void ImportDisplayCaptureInfo(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); // TODO(Subv): We're always returning the framebuffer structures for thread_id = 0, // because we only support a single running application at a time. // This should always return the framebuffer data that is currently displayed on the screen. u32 thread_id = 0; FrameBufferUpdate* top_screen = GetFrameBufferInfo(thread_id, 0); FrameBufferUpdate* bottom_screen = GetFrameBufferInfo(thread_id, 1); cmd_buff[2] = top_screen->framebuffer_info[top_screen->index].address_left; cmd_buff[3] = top_screen->framebuffer_info[top_screen->index].address_right; cmd_buff[4] = top_screen->framebuffer_info[top_screen->index].format; cmd_buff[5] = top_screen->framebuffer_info[top_screen->index].stride; cmd_buff[6] = bottom_screen->framebuffer_info[bottom_screen->index].address_left; cmd_buff[7] = bottom_screen->framebuffer_info[bottom_screen->index].address_right; cmd_buff[8] = bottom_screen->framebuffer_info[bottom_screen->index].format; cmd_buff[9] = bottom_screen->framebuffer_info[bottom_screen->index].stride; cmd_buff[1] = RESULT_SUCCESS.raw; LOG_WARNING(Service_GSP, "called"); } const Interface::FunctionInfo FunctionTable[] = { {0x00010082, WriteHWRegs, "WriteHWRegs"}, {0x00020084, WriteHWRegsWithMask, "WriteHWRegsWithMask"}, {0x00030082, nullptr, "WriteHWRegRepeat"}, {0x00040080, ReadHWRegs, "ReadHWRegs"}, {0x00050200, SetBufferSwap, "SetBufferSwap"}, {0x00060082, nullptr, "SetCommandList"}, {0x000700C2, nullptr, "RequestDma"}, {0x00080082, FlushDataCache, "FlushDataCache"}, {0x00090082, nullptr, "InvalidateDataCache"}, {0x000A0044, nullptr, "RegisterInterruptEvents"}, {0x000B0040, SetLcdForceBlack, "SetLcdForceBlack"}, {0x000C0000, TriggerCmdReqQueue, "TriggerCmdReqQueue"}, {0x000D0140, nullptr, "SetDisplayTransfer"}, {0x000E0180, nullptr, "SetTextureCopy"}, {0x000F0200, nullptr, "SetMemoryFill"}, {0x00100040, nullptr, "SetAxiConfigQoSMode"}, {0x00110040, nullptr, "SetPerfLogMode"}, {0x00120000, nullptr, "GetPerfLog"}, {0x00130042, RegisterInterruptRelayQueue, "RegisterInterruptRelayQueue"}, {0x00140000, nullptr, "UnregisterInterruptRelayQueue"}, {0x00150002, nullptr, "TryAcquireRight"}, {0x00160042, nullptr, "AcquireRight"}, {0x00170000, nullptr, "ReleaseRight"}, {0x00180000, ImportDisplayCaptureInfo, "ImportDisplayCaptureInfo"}, {0x00190000, nullptr, "SaveVramSysArea"}, {0x001A0000, nullptr, "RestoreVramSysArea"}, {0x001B0000, nullptr, "ResetGpuCore"}, {0x001C0040, nullptr, "SetLedForceOff"}, {0x001D0040, nullptr, "SetTestCommand"}, {0x001E0080, nullptr, "SetInternalPriorities"}, {0x001F0082, nullptr, "StoreDataCache"}, }; //////////////////////////////////////////////////////////////////////////////////////////////////// // Interface class Interface::Interface() { Register(FunctionTable); g_interrupt_event = nullptr; using Kernel::MemoryPermission; g_shared_memory = Kernel::SharedMemory::Create(0x1000, MemoryPermission::ReadWrite, MemoryPermission::ReadWrite, "GSPSharedMem"); g_thread_id = 0; } Interface::~Interface() { g_interrupt_event = nullptr; g_shared_memory = nullptr; } } // namespace