yuzu-android/src/core/hle/kernel/process.cpp
Lioncash 2beda7c2b3 kernel/process: Use accessors instead of class members for referencing segment array
Using member variables for referencing the segments array increases the
size of the class in memory for little benefit. The same behavior can be
achieved through the use of accessors that just return the relevant
segment.
2018-08-03 14:45:45 -04:00

253 lines
8.7 KiB
C++

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <memory>
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/logging/log.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
namespace Kernel {
// Lists all processes that exist in the current session.
static std::vector<SharedPtr<Process>> process_list;
SharedPtr<CodeSet> CodeSet::Create(std::string name) {
SharedPtr<CodeSet> codeset(new CodeSet);
codeset->name = std::move(name);
return codeset;
}
CodeSet::CodeSet() {}
CodeSet::~CodeSet() {}
u32 Process::next_process_id;
SharedPtr<Process> Process::Create(std::string&& name) {
SharedPtr<Process> process(new Process);
process->name = std::move(name);
process->flags.raw = 0;
process->flags.memory_region.Assign(MemoryRegion::APPLICATION);
process->status = ProcessStatus::Created;
process->program_id = 0;
process_list.push_back(process);
return process;
}
void Process::ParseKernelCaps(const u32* kernel_caps, size_t len) {
for (size_t i = 0; i < len; ++i) {
u32 descriptor = kernel_caps[i];
u32 type = descriptor >> 20;
if (descriptor == 0xFFFFFFFF) {
// Unused descriptor entry
continue;
} else if ((type & 0xF00) == 0xE00) { // 0x0FFF
// Allowed interrupts list
LOG_WARNING(Loader, "ExHeader allowed interrupts list ignored");
} else if ((type & 0xF80) == 0xF00) { // 0x07FF
// Allowed syscalls mask
unsigned int index = ((descriptor >> 24) & 7) * 24;
u32 bits = descriptor & 0xFFFFFF;
while (bits && index < svc_access_mask.size()) {
svc_access_mask.set(index, bits & 1);
++index;
bits >>= 1;
}
} else if ((type & 0xFF0) == 0xFE0) { // 0x00FF
// Handle table size
handle_table_size = descriptor & 0x3FF;
} else if ((type & 0xFF8) == 0xFF0) { // 0x007F
// Misc. flags
flags.raw = descriptor & 0xFFFF;
} else if ((type & 0xFFE) == 0xFF8) { // 0x001F
// Mapped memory range
if (i + 1 >= len || ((kernel_caps[i + 1] >> 20) & 0xFFE) != 0xFF8) {
LOG_WARNING(Loader, "Incomplete exheader memory range descriptor ignored.");
continue;
}
u32 end_desc = kernel_caps[i + 1];
++i; // Skip over the second descriptor on the next iteration
AddressMapping mapping;
mapping.address = descriptor << 12;
VAddr end_address = end_desc << 12;
if (mapping.address < end_address) {
mapping.size = end_address - mapping.address;
} else {
mapping.size = 0;
}
mapping.read_only = (descriptor & (1 << 20)) != 0;
mapping.unk_flag = (end_desc & (1 << 20)) != 0;
address_mappings.push_back(mapping);
} else if ((type & 0xFFF) == 0xFFE) { // 0x000F
// Mapped memory page
AddressMapping mapping;
mapping.address = descriptor << 12;
mapping.size = Memory::PAGE_SIZE;
mapping.read_only = false;
mapping.unk_flag = false;
address_mappings.push_back(mapping);
} else if ((type & 0xFE0) == 0xFC0) { // 0x01FF
// Kernel version
kernel_version = descriptor & 0xFFFF;
int minor = kernel_version & 0xFF;
int major = (kernel_version >> 8) & 0xFF;
LOG_INFO(Loader, "ExHeader kernel version: {}.{}", major, minor);
} else {
LOG_ERROR(Loader, "Unhandled kernel caps descriptor: 0x{:08X}", descriptor);
}
}
}
void Process::Run(VAddr entry_point, s32 main_thread_priority, u32 stack_size) {
// Allocate and map the main thread stack
// TODO(bunnei): This is heap area that should be allocated by the kernel and not mapped as part
// of the user address space.
vm_manager
.MapMemoryBlock(Memory::STACK_AREA_VADDR_END - stack_size,
std::make_shared<std::vector<u8>>(stack_size, 0), 0, stack_size,
MemoryState::Mapped)
.Unwrap();
vm_manager.LogLayout();
status = ProcessStatus::Running;
Kernel::SetupMainThread(entry_point, main_thread_priority, this);
}
void Process::LoadModule(SharedPtr<CodeSet> module_, VAddr base_addr) {
const auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions,
MemoryState memory_state) {
auto vma = vm_manager
.MapMemoryBlock(segment.addr + base_addr, module_->memory, segment.offset,
segment.size, memory_state)
.Unwrap();
vm_manager.Reprotect(vma, permissions);
};
// Map CodeSet segments
MapSegment(module_->CodeSegment(), VMAPermission::ReadExecute, MemoryState::CodeStatic);
MapSegment(module_->RODataSegment(), VMAPermission::Read, MemoryState::CodeMutable);
MapSegment(module_->DataSegment(), VMAPermission::ReadWrite, MemoryState::CodeMutable);
}
ResultVal<VAddr> Process::HeapAllocate(VAddr target, u64 size, VMAPermission perms) {
if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END ||
target + size < target) {
return ERR_INVALID_ADDRESS;
}
if (heap_memory == nullptr) {
// Initialize heap
heap_memory = std::make_shared<std::vector<u8>>();
heap_start = heap_end = target;
} else {
vm_manager.UnmapRange(heap_start, heap_end - heap_start);
}
// If necessary, expand backing vector to cover new heap extents.
if (target < heap_start) {
heap_memory->insert(begin(*heap_memory), heap_start - target, 0);
heap_start = target;
vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
}
if (target + size > heap_end) {
heap_memory->insert(end(*heap_memory), (target + size) - heap_end, 0);
heap_end = target + size;
vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
}
ASSERT(heap_end - heap_start == heap_memory->size());
CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, heap_memory, target - heap_start,
size, MemoryState::Heap));
vm_manager.Reprotect(vma, perms);
heap_used = size;
return MakeResult<VAddr>(heap_end - size);
}
ResultCode Process::HeapFree(VAddr target, u32 size) {
if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END ||
target + size < target) {
return ERR_INVALID_ADDRESS;
}
if (size == 0) {
return RESULT_SUCCESS;
}
ResultCode result = vm_manager.UnmapRange(target, size);
if (result.IsError())
return result;
heap_used -= size;
return RESULT_SUCCESS;
}
ResultCode Process::MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size) {
auto vma = vm_manager.FindVMA(src_addr);
ASSERT_MSG(vma != vm_manager.vma_map.end(), "Invalid memory address");
ASSERT_MSG(vma->second.backing_block, "Backing block doesn't exist for address");
// The returned VMA might be a bigger one encompassing the desired address.
auto vma_offset = src_addr - vma->first;
ASSERT_MSG(vma_offset + size <= vma->second.size,
"Shared memory exceeds bounds of mapped block");
const std::shared_ptr<std::vector<u8>>& backing_block = vma->second.backing_block;
size_t backing_block_offset = vma->second.offset + vma_offset;
CASCADE_RESULT(auto new_vma,
vm_manager.MapMemoryBlock(dst_addr, backing_block, backing_block_offset, size,
MemoryState::Mapped));
// Protect mirror with permissions from old region
vm_manager.Reprotect(new_vma, vma->second.permissions);
// Remove permissions from old region
vm_manager.Reprotect(vma, VMAPermission::None);
return RESULT_SUCCESS;
}
ResultCode Process::UnmapMemory(VAddr dst_addr, VAddr /*src_addr*/, u64 size) {
return vm_manager.UnmapRange(dst_addr, size);
}
Kernel::Process::Process() {}
Kernel::Process::~Process() {}
void ClearProcessList() {
process_list.clear();
}
SharedPtr<Process> GetProcessById(u32 process_id) {
auto itr = std::find_if(
process_list.begin(), process_list.end(),
[&](const SharedPtr<Process>& process) { return process->process_id == process_id; });
if (itr == process_list.end())
return nullptr;
return *itr;
}
} // namespace Kernel