mirror of
https://github.com/yuzu-emu/yuzu-android
synced 2025-01-03 20:51:22 -08:00
307 lines
9.7 KiB
C++
307 lines
9.7 KiB
C++
// Copyright 2018 yuzu emulator team
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <cinttypes>
|
|
#include <memory>
|
|
#include <dynarmic/A64/a64.h>
|
|
#include <dynarmic/A64/config.h>
|
|
#include "common/logging/log.h"
|
|
#include "common/microprofile.h"
|
|
#include "core/arm/dynarmic/arm_dynarmic.h"
|
|
#include "core/core.h"
|
|
#include "core/core_cpu.h"
|
|
#include "core/core_timing.h"
|
|
#include "core/core_timing_util.h"
|
|
#include "core/gdbstub/gdbstub.h"
|
|
#include "core/hle/kernel/process.h"
|
|
#include "core/hle/kernel/svc.h"
|
|
#include "core/hle/kernel/vm_manager.h"
|
|
#include "core/memory.h"
|
|
|
|
namespace Core {
|
|
|
|
using Vector = Dynarmic::A64::Vector;
|
|
|
|
class ARM_Dynarmic_Callbacks : public Dynarmic::A64::UserCallbacks {
|
|
public:
|
|
explicit ARM_Dynarmic_Callbacks(ARM_Dynarmic& parent) : parent(parent) {}
|
|
|
|
u8 MemoryRead8(u64 vaddr) override {
|
|
return Memory::Read8(vaddr);
|
|
}
|
|
u16 MemoryRead16(u64 vaddr) override {
|
|
return Memory::Read16(vaddr);
|
|
}
|
|
u32 MemoryRead32(u64 vaddr) override {
|
|
return Memory::Read32(vaddr);
|
|
}
|
|
u64 MemoryRead64(u64 vaddr) override {
|
|
return Memory::Read64(vaddr);
|
|
}
|
|
Vector MemoryRead128(u64 vaddr) override {
|
|
return {Memory::Read64(vaddr), Memory::Read64(vaddr + 8)};
|
|
}
|
|
|
|
void MemoryWrite8(u64 vaddr, u8 value) override {
|
|
Memory::Write8(vaddr, value);
|
|
}
|
|
void MemoryWrite16(u64 vaddr, u16 value) override {
|
|
Memory::Write16(vaddr, value);
|
|
}
|
|
void MemoryWrite32(u64 vaddr, u32 value) override {
|
|
Memory::Write32(vaddr, value);
|
|
}
|
|
void MemoryWrite64(u64 vaddr, u64 value) override {
|
|
Memory::Write64(vaddr, value);
|
|
}
|
|
void MemoryWrite128(u64 vaddr, Vector value) override {
|
|
Memory::Write64(vaddr, value[0]);
|
|
Memory::Write64(vaddr + 8, value[1]);
|
|
}
|
|
|
|
void InterpreterFallback(u64 pc, std::size_t num_instructions) override {
|
|
LOG_INFO(Core_ARM, "Unicorn fallback @ 0x{:X} for {} instructions (instr = {:08X})", pc,
|
|
num_instructions, MemoryReadCode(pc));
|
|
|
|
ARM_Interface::ThreadContext ctx;
|
|
parent.SaveContext(ctx);
|
|
parent.inner_unicorn.LoadContext(ctx);
|
|
parent.inner_unicorn.ExecuteInstructions(static_cast<int>(num_instructions));
|
|
parent.inner_unicorn.SaveContext(ctx);
|
|
parent.LoadContext(ctx);
|
|
num_interpreted_instructions += num_instructions;
|
|
}
|
|
|
|
void ExceptionRaised(u64 pc, Dynarmic::A64::Exception exception) override {
|
|
switch (exception) {
|
|
case Dynarmic::A64::Exception::WaitForInterrupt:
|
|
case Dynarmic::A64::Exception::WaitForEvent:
|
|
case Dynarmic::A64::Exception::SendEvent:
|
|
case Dynarmic::A64::Exception::SendEventLocal:
|
|
case Dynarmic::A64::Exception::Yield:
|
|
return;
|
|
case Dynarmic::A64::Exception::Breakpoint:
|
|
if (GDBStub::IsServerEnabled()) {
|
|
parent.jit->HaltExecution();
|
|
parent.SetPC(pc);
|
|
Kernel::Thread* thread = Kernel::GetCurrentThread();
|
|
parent.SaveContext(thread->GetContext());
|
|
GDBStub::Break();
|
|
GDBStub::SendTrap(thread, 5);
|
|
return;
|
|
}
|
|
[[fallthrough]];
|
|
default:
|
|
ASSERT_MSG(false, "ExceptionRaised(exception = {}, pc = {:X})",
|
|
static_cast<std::size_t>(exception), pc);
|
|
}
|
|
}
|
|
|
|
void CallSVC(u32 swi) override {
|
|
Kernel::CallSVC(parent.system, swi);
|
|
}
|
|
|
|
void AddTicks(u64 ticks) override {
|
|
// Divide the number of ticks by the amount of CPU cores. TODO(Subv): This yields only a
|
|
// rough approximation of the amount of executed ticks in the system, it may be thrown off
|
|
// if not all cores are doing a similar amount of work. Instead of doing this, we should
|
|
// device a way so that timing is consistent across all cores without increasing the ticks 4
|
|
// times.
|
|
u64 amortized_ticks = (ticks - num_interpreted_instructions) / Core::NUM_CPU_CORES;
|
|
// Always execute at least one tick.
|
|
amortized_ticks = std::max<u64>(amortized_ticks, 1);
|
|
|
|
parent.system.CoreTiming().AddTicks(amortized_ticks);
|
|
num_interpreted_instructions = 0;
|
|
}
|
|
u64 GetTicksRemaining() override {
|
|
return std::max(parent.system.CoreTiming().GetDowncount(), 0);
|
|
}
|
|
u64 GetCNTPCT() override {
|
|
return Timing::CpuCyclesToClockCycles(parent.system.CoreTiming().GetTicks());
|
|
}
|
|
|
|
ARM_Dynarmic& parent;
|
|
std::size_t num_interpreted_instructions = 0;
|
|
u64 tpidrro_el0 = 0;
|
|
u64 tpidr_el0 = 0;
|
|
};
|
|
|
|
std::unique_ptr<Dynarmic::A64::Jit> ARM_Dynarmic::MakeJit(Common::PageTable& page_table,
|
|
std::size_t address_space_bits) const {
|
|
Dynarmic::A64::UserConfig config;
|
|
|
|
// Callbacks
|
|
config.callbacks = cb.get();
|
|
|
|
// Memory
|
|
config.page_table = reinterpret_cast<void**>(page_table.pointers.data());
|
|
config.page_table_address_space_bits = address_space_bits;
|
|
config.silently_mirror_page_table = false;
|
|
|
|
// Multi-process state
|
|
config.processor_id = core_index;
|
|
config.global_monitor = &exclusive_monitor.monitor;
|
|
|
|
// System registers
|
|
config.tpidrro_el0 = &cb->tpidrro_el0;
|
|
config.tpidr_el0 = &cb->tpidr_el0;
|
|
config.dczid_el0 = 4;
|
|
config.ctr_el0 = 0x8444c004;
|
|
config.cntfrq_el0 = Timing::CNTFREQ;
|
|
|
|
// Unpredictable instructions
|
|
config.define_unpredictable_behaviour = true;
|
|
|
|
return std::make_unique<Dynarmic::A64::Jit>(config);
|
|
}
|
|
|
|
MICROPROFILE_DEFINE(ARM_Jit_Dynarmic, "ARM JIT", "Dynarmic", MP_RGB(255, 64, 64));
|
|
|
|
void ARM_Dynarmic::Run() {
|
|
MICROPROFILE_SCOPE(ARM_Jit_Dynarmic);
|
|
|
|
jit->Run();
|
|
}
|
|
|
|
void ARM_Dynarmic::Step() {
|
|
cb->InterpreterFallback(jit->GetPC(), 1);
|
|
}
|
|
|
|
ARM_Dynarmic::ARM_Dynarmic(System& system, ExclusiveMonitor& exclusive_monitor,
|
|
std::size_t core_index)
|
|
: cb(std::make_unique<ARM_Dynarmic_Callbacks>(*this)), inner_unicorn{system},
|
|
core_index{core_index}, system{system},
|
|
exclusive_monitor{dynamic_cast<DynarmicExclusiveMonitor&>(exclusive_monitor)} {}
|
|
|
|
ARM_Dynarmic::~ARM_Dynarmic() = default;
|
|
|
|
void ARM_Dynarmic::SetPC(u64 pc) {
|
|
jit->SetPC(pc);
|
|
}
|
|
|
|
u64 ARM_Dynarmic::GetPC() const {
|
|
return jit->GetPC();
|
|
}
|
|
|
|
u64 ARM_Dynarmic::GetReg(int index) const {
|
|
return jit->GetRegister(index);
|
|
}
|
|
|
|
void ARM_Dynarmic::SetReg(int index, u64 value) {
|
|
jit->SetRegister(index, value);
|
|
}
|
|
|
|
u128 ARM_Dynarmic::GetVectorReg(int index) const {
|
|
return jit->GetVector(index);
|
|
}
|
|
|
|
void ARM_Dynarmic::SetVectorReg(int index, u128 value) {
|
|
jit->SetVector(index, value);
|
|
}
|
|
|
|
u32 ARM_Dynarmic::GetPSTATE() const {
|
|
return jit->GetPstate();
|
|
}
|
|
|
|
void ARM_Dynarmic::SetPSTATE(u32 pstate) {
|
|
jit->SetPstate(pstate);
|
|
}
|
|
|
|
u64 ARM_Dynarmic::GetTlsAddress() const {
|
|
return cb->tpidrro_el0;
|
|
}
|
|
|
|
void ARM_Dynarmic::SetTlsAddress(VAddr address) {
|
|
cb->tpidrro_el0 = address;
|
|
}
|
|
|
|
u64 ARM_Dynarmic::GetTPIDR_EL0() const {
|
|
return cb->tpidr_el0;
|
|
}
|
|
|
|
void ARM_Dynarmic::SetTPIDR_EL0(u64 value) {
|
|
cb->tpidr_el0 = value;
|
|
}
|
|
|
|
void ARM_Dynarmic::SaveContext(ThreadContext& ctx) {
|
|
ctx.cpu_registers = jit->GetRegisters();
|
|
ctx.sp = jit->GetSP();
|
|
ctx.pc = jit->GetPC();
|
|
ctx.pstate = jit->GetPstate();
|
|
ctx.vector_registers = jit->GetVectors();
|
|
ctx.fpcr = jit->GetFpcr();
|
|
ctx.fpsr = jit->GetFpsr();
|
|
ctx.tpidr = cb->tpidr_el0;
|
|
}
|
|
|
|
void ARM_Dynarmic::LoadContext(const ThreadContext& ctx) {
|
|
jit->SetRegisters(ctx.cpu_registers);
|
|
jit->SetSP(ctx.sp);
|
|
jit->SetPC(ctx.pc);
|
|
jit->SetPstate(ctx.pstate);
|
|
jit->SetVectors(ctx.vector_registers);
|
|
jit->SetFpcr(ctx.fpcr);
|
|
jit->SetFpsr(ctx.fpsr);
|
|
SetTPIDR_EL0(ctx.tpidr);
|
|
}
|
|
|
|
void ARM_Dynarmic::PrepareReschedule() {
|
|
jit->HaltExecution();
|
|
}
|
|
|
|
void ARM_Dynarmic::ClearInstructionCache() {
|
|
jit->ClearCache();
|
|
}
|
|
|
|
void ARM_Dynarmic::ClearExclusiveState() {
|
|
jit->ClearExclusiveState();
|
|
}
|
|
|
|
void ARM_Dynarmic::PageTableChanged(Common::PageTable& page_table,
|
|
std::size_t new_address_space_size_in_bits) {
|
|
jit = MakeJit(page_table, new_address_space_size_in_bits);
|
|
}
|
|
|
|
DynarmicExclusiveMonitor::DynarmicExclusiveMonitor(std::size_t core_count) : monitor(core_count) {}
|
|
DynarmicExclusiveMonitor::~DynarmicExclusiveMonitor() = default;
|
|
|
|
void DynarmicExclusiveMonitor::SetExclusive(std::size_t core_index, VAddr addr) {
|
|
// Size doesn't actually matter.
|
|
monitor.Mark(core_index, addr, 16);
|
|
}
|
|
|
|
void DynarmicExclusiveMonitor::ClearExclusive() {
|
|
monitor.Clear();
|
|
}
|
|
|
|
bool DynarmicExclusiveMonitor::ExclusiveWrite8(std::size_t core_index, VAddr vaddr, u8 value) {
|
|
return monitor.DoExclusiveOperation(core_index, vaddr, 1,
|
|
[&] { Memory::Write8(vaddr, value); });
|
|
}
|
|
|
|
bool DynarmicExclusiveMonitor::ExclusiveWrite16(std::size_t core_index, VAddr vaddr, u16 value) {
|
|
return monitor.DoExclusiveOperation(core_index, vaddr, 2,
|
|
[&] { Memory::Write16(vaddr, value); });
|
|
}
|
|
|
|
bool DynarmicExclusiveMonitor::ExclusiveWrite32(std::size_t core_index, VAddr vaddr, u32 value) {
|
|
return monitor.DoExclusiveOperation(core_index, vaddr, 4,
|
|
[&] { Memory::Write32(vaddr, value); });
|
|
}
|
|
|
|
bool DynarmicExclusiveMonitor::ExclusiveWrite64(std::size_t core_index, VAddr vaddr, u64 value) {
|
|
return monitor.DoExclusiveOperation(core_index, vaddr, 8,
|
|
[&] { Memory::Write64(vaddr, value); });
|
|
}
|
|
|
|
bool DynarmicExclusiveMonitor::ExclusiveWrite128(std::size_t core_index, VAddr vaddr, u128 value) {
|
|
return monitor.DoExclusiveOperation(core_index, vaddr, 16, [&] {
|
|
Memory::Write64(vaddr + 0, value[0]);
|
|
Memory::Write64(vaddr + 8, value[1]);
|
|
});
|
|
}
|
|
|
|
} // namespace Core
|