mirror of
https://github.com/yuzu-emu/yuzu-android
synced 2025-01-23 19:11:55 -08:00
0cbcd6ec9a
As means to pave the way for getting rid of global state within core, This eliminates kernel global state by removing all globals. Instead this introduces a KernelCore class which acts as a kernel instance. This instance lives in the System class, which keeps its lifetime contained to the lifetime of the System class. This also forces the kernel types to actually interact with the main kernel instance itself instead of having transient kernel state placed all over several translation units, keeping everything together. It also has a nice consequence of making dependencies much more explicit. This also makes our initialization a tad bit more correct. Previously we were creating a kernel process before the actual kernel was initialized, which doesn't really make much sense. The KernelCore class itself follows the PImpl idiom, which allows keeping all the implementation details sealed away from everything else, which forces the use of the exposed API and allows us to avoid any unnecessary inclusions within the main kernel header.
458 lines
16 KiB
C++
458 lines
16 KiB
C++
// Copyright 2014 Citra Emulator Project / PPSSPP Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <algorithm>
|
|
#include <cinttypes>
|
|
#include <vector>
|
|
|
|
#include <boost/optional.hpp>
|
|
#include <boost/range/algorithm_ext/erase.hpp>
|
|
|
|
#include "common/assert.h"
|
|
#include "common/common_types.h"
|
|
#include "common/logging/log.h"
|
|
#include "common/math_util.h"
|
|
#include "common/thread_queue_list.h"
|
|
#include "core/arm/arm_interface.h"
|
|
#include "core/core.h"
|
|
#include "core/core_timing.h"
|
|
#include "core/core_timing_util.h"
|
|
#include "core/hle/kernel/errors.h"
|
|
#include "core/hle/kernel/handle_table.h"
|
|
#include "core/hle/kernel/kernel.h"
|
|
#include "core/hle/kernel/object.h"
|
|
#include "core/hle/kernel/process.h"
|
|
#include "core/hle/kernel/thread.h"
|
|
#include "core/hle/lock.h"
|
|
#include "core/hle/result.h"
|
|
#include "core/memory.h"
|
|
|
|
namespace Kernel {
|
|
|
|
bool Thread::ShouldWait(Thread* thread) const {
|
|
return status != ThreadStatus::Dead;
|
|
}
|
|
|
|
void Thread::Acquire(Thread* thread) {
|
|
ASSERT_MSG(!ShouldWait(thread), "object unavailable!");
|
|
}
|
|
|
|
Thread::Thread(KernelCore& kernel) : WaitObject{kernel} {}
|
|
Thread::~Thread() = default;
|
|
|
|
void Thread::Stop() {
|
|
// Cancel any outstanding wakeup events for this thread
|
|
CoreTiming::UnscheduleEvent(kernel.ThreadWakeupCallbackEventType(), callback_handle);
|
|
kernel.ThreadWakeupCallbackHandleTable().Close(callback_handle);
|
|
callback_handle = 0;
|
|
|
|
// Clean up thread from ready queue
|
|
// This is only needed when the thread is terminated forcefully (SVC TerminateProcess)
|
|
if (status == ThreadStatus::Ready) {
|
|
scheduler->UnscheduleThread(this, current_priority);
|
|
}
|
|
|
|
status = ThreadStatus::Dead;
|
|
|
|
WakeupAllWaitingThreads();
|
|
|
|
// Clean up any dangling references in objects that this thread was waiting for
|
|
for (auto& wait_object : wait_objects) {
|
|
wait_object->RemoveWaitingThread(this);
|
|
}
|
|
wait_objects.clear();
|
|
|
|
// Mark the TLS slot in the thread's page as free.
|
|
const u64 tls_page = (tls_address - Memory::TLS_AREA_VADDR) / Memory::PAGE_SIZE;
|
|
const u64 tls_slot =
|
|
((tls_address - Memory::TLS_AREA_VADDR) % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE;
|
|
Core::CurrentProcess()->tls_slots[tls_page].reset(tls_slot);
|
|
}
|
|
|
|
void WaitCurrentThread_Sleep() {
|
|
Thread* thread = GetCurrentThread();
|
|
thread->status = ThreadStatus::WaitSleep;
|
|
}
|
|
|
|
void ExitCurrentThread() {
|
|
Thread* thread = GetCurrentThread();
|
|
thread->Stop();
|
|
Core::System::GetInstance().CurrentScheduler().RemoveThread(thread);
|
|
}
|
|
|
|
void Thread::WakeAfterDelay(s64 nanoseconds) {
|
|
// Don't schedule a wakeup if the thread wants to wait forever
|
|
if (nanoseconds == -1)
|
|
return;
|
|
|
|
// This function might be called from any thread so we have to be cautious and use the
|
|
// thread-safe version of ScheduleEvent.
|
|
CoreTiming::ScheduleEventThreadsafe(CoreTiming::nsToCycles(nanoseconds),
|
|
kernel.ThreadWakeupCallbackEventType(), callback_handle);
|
|
}
|
|
|
|
void Thread::CancelWakeupTimer() {
|
|
CoreTiming::UnscheduleEventThreadsafe(kernel.ThreadWakeupCallbackEventType(), callback_handle);
|
|
}
|
|
|
|
static boost::optional<s32> GetNextProcessorId(u64 mask) {
|
|
for (s32 index = 0; index < Core::NUM_CPU_CORES; ++index) {
|
|
if (mask & (1ULL << index)) {
|
|
if (!Core::System::GetInstance().Scheduler(index)->GetCurrentThread()) {
|
|
// Core is enabled and not running any threads, use this one
|
|
return index;
|
|
}
|
|
}
|
|
}
|
|
return {};
|
|
}
|
|
|
|
void Thread::ResumeFromWait() {
|
|
ASSERT_MSG(wait_objects.empty(), "Thread is waking up while waiting for objects");
|
|
|
|
switch (status) {
|
|
case ThreadStatus::WaitSynchAll:
|
|
case ThreadStatus::WaitSynchAny:
|
|
case ThreadStatus::WaitHLEEvent:
|
|
case ThreadStatus::WaitSleep:
|
|
case ThreadStatus::WaitIPC:
|
|
case ThreadStatus::WaitMutex:
|
|
case ThreadStatus::WaitArb:
|
|
break;
|
|
|
|
case ThreadStatus::Ready:
|
|
// The thread's wakeup callback must have already been cleared when the thread was first
|
|
// awoken.
|
|
ASSERT(wakeup_callback == nullptr);
|
|
// If the thread is waiting on multiple wait objects, it might be awoken more than once
|
|
// before actually resuming. We can ignore subsequent wakeups if the thread status has
|
|
// already been set to ThreadStatus::Ready.
|
|
return;
|
|
|
|
case ThreadStatus::Running:
|
|
DEBUG_ASSERT_MSG(false, "Thread with object id {} has already resumed.", GetObjectId());
|
|
return;
|
|
case ThreadStatus::Dead:
|
|
// This should never happen, as threads must complete before being stopped.
|
|
DEBUG_ASSERT_MSG(false, "Thread with object id {} cannot be resumed because it's DEAD.",
|
|
GetObjectId());
|
|
return;
|
|
}
|
|
|
|
wakeup_callback = nullptr;
|
|
|
|
status = ThreadStatus::Ready;
|
|
|
|
boost::optional<s32> new_processor_id = GetNextProcessorId(affinity_mask);
|
|
if (!new_processor_id) {
|
|
new_processor_id = processor_id;
|
|
}
|
|
if (ideal_core != -1 &&
|
|
Core::System::GetInstance().Scheduler(ideal_core)->GetCurrentThread() == nullptr) {
|
|
new_processor_id = ideal_core;
|
|
}
|
|
|
|
ASSERT(*new_processor_id < 4);
|
|
|
|
// Add thread to new core's scheduler
|
|
auto& next_scheduler = Core::System::GetInstance().Scheduler(*new_processor_id);
|
|
|
|
if (*new_processor_id != processor_id) {
|
|
// Remove thread from previous core's scheduler
|
|
scheduler->RemoveThread(this);
|
|
next_scheduler->AddThread(this, current_priority);
|
|
}
|
|
|
|
processor_id = *new_processor_id;
|
|
|
|
// If the thread was ready, unschedule from the previous core and schedule on the new core
|
|
scheduler->UnscheduleThread(this, current_priority);
|
|
next_scheduler->ScheduleThread(this, current_priority);
|
|
|
|
// Change thread's scheduler
|
|
scheduler = next_scheduler;
|
|
|
|
Core::System::GetInstance().CpuCore(processor_id).PrepareReschedule();
|
|
}
|
|
|
|
/**
|
|
* Finds a free location for the TLS section of a thread.
|
|
* @param tls_slots The TLS page array of the thread's owner process.
|
|
* Returns a tuple of (page, slot, alloc_needed) where:
|
|
* page: The index of the first allocated TLS page that has free slots.
|
|
* slot: The index of the first free slot in the indicated page.
|
|
* alloc_needed: Whether there's a need to allocate a new TLS page (All pages are full).
|
|
*/
|
|
static std::tuple<std::size_t, std::size_t, bool> GetFreeThreadLocalSlot(
|
|
const std::vector<std::bitset<8>>& tls_slots) {
|
|
// Iterate over all the allocated pages, and try to find one where not all slots are used.
|
|
for (std::size_t page = 0; page < tls_slots.size(); ++page) {
|
|
const auto& page_tls_slots = tls_slots[page];
|
|
if (!page_tls_slots.all()) {
|
|
// We found a page with at least one free slot, find which slot it is
|
|
for (std::size_t slot = 0; slot < page_tls_slots.size(); ++slot) {
|
|
if (!page_tls_slots.test(slot)) {
|
|
return std::make_tuple(page, slot, false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::make_tuple(0, 0, true);
|
|
}
|
|
|
|
/**
|
|
* Resets a thread context, making it ready to be scheduled and run by the CPU
|
|
* @param context Thread context to reset
|
|
* @param stack_top Address of the top of the stack
|
|
* @param entry_point Address of entry point for execution
|
|
* @param arg User argument for thread
|
|
*/
|
|
static void ResetThreadContext(Core::ARM_Interface::ThreadContext& context, VAddr stack_top,
|
|
VAddr entry_point, u64 arg) {
|
|
memset(&context, 0, sizeof(Core::ARM_Interface::ThreadContext));
|
|
|
|
context.cpu_registers[0] = arg;
|
|
context.pc = entry_point;
|
|
context.sp = stack_top;
|
|
context.cpsr = 0;
|
|
context.fpscr = 0;
|
|
}
|
|
|
|
ResultVal<SharedPtr<Thread>> Thread::Create(KernelCore& kernel, std::string name, VAddr entry_point,
|
|
u32 priority, u64 arg, s32 processor_id,
|
|
VAddr stack_top, SharedPtr<Process> owner_process) {
|
|
// Check if priority is in ranged. Lowest priority -> highest priority id.
|
|
if (priority > THREADPRIO_LOWEST) {
|
|
LOG_ERROR(Kernel_SVC, "Invalid thread priority: {}", priority);
|
|
return ERR_OUT_OF_RANGE;
|
|
}
|
|
|
|
if (processor_id > THREADPROCESSORID_MAX) {
|
|
LOG_ERROR(Kernel_SVC, "Invalid processor id: {}", processor_id);
|
|
return ERR_OUT_OF_RANGE_KERNEL;
|
|
}
|
|
|
|
// TODO(yuriks): Other checks, returning 0xD9001BEA
|
|
|
|
if (!Memory::IsValidVirtualAddress(*owner_process, entry_point)) {
|
|
LOG_ERROR(Kernel_SVC, "(name={}): invalid entry {:016X}", name, entry_point);
|
|
// TODO (bunnei): Find the correct error code to use here
|
|
return ResultCode(-1);
|
|
}
|
|
|
|
SharedPtr<Thread> thread(new Thread(kernel));
|
|
|
|
thread->thread_id = kernel.CreateNewThreadID();
|
|
thread->status = ThreadStatus::Dormant;
|
|
thread->entry_point = entry_point;
|
|
thread->stack_top = stack_top;
|
|
thread->tpidr_el0 = 0;
|
|
thread->nominal_priority = thread->current_priority = priority;
|
|
thread->last_running_ticks = CoreTiming::GetTicks();
|
|
thread->processor_id = processor_id;
|
|
thread->ideal_core = processor_id;
|
|
thread->affinity_mask = 1ULL << processor_id;
|
|
thread->wait_objects.clear();
|
|
thread->mutex_wait_address = 0;
|
|
thread->condvar_wait_address = 0;
|
|
thread->wait_handle = 0;
|
|
thread->name = std::move(name);
|
|
thread->callback_handle = kernel.ThreadWakeupCallbackHandleTable().Create(thread).Unwrap();
|
|
thread->owner_process = owner_process;
|
|
thread->scheduler = Core::System::GetInstance().Scheduler(processor_id);
|
|
thread->scheduler->AddThread(thread, priority);
|
|
|
|
// Find the next available TLS index, and mark it as used
|
|
auto& tls_slots = owner_process->tls_slots;
|
|
|
|
auto [available_page, available_slot, needs_allocation] = GetFreeThreadLocalSlot(tls_slots);
|
|
if (needs_allocation) {
|
|
tls_slots.emplace_back(0); // The page is completely available at the start
|
|
available_page = tls_slots.size() - 1;
|
|
available_slot = 0; // Use the first slot in the new page
|
|
|
|
// Allocate some memory from the end of the linear heap for this region.
|
|
const size_t offset = thread->tls_memory->size();
|
|
thread->tls_memory->insert(thread->tls_memory->end(), Memory::PAGE_SIZE, 0);
|
|
|
|
auto& vm_manager = owner_process->vm_manager;
|
|
vm_manager.RefreshMemoryBlockMappings(thread->tls_memory.get());
|
|
|
|
vm_manager.MapMemoryBlock(Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE,
|
|
thread->tls_memory, 0, Memory::PAGE_SIZE,
|
|
MemoryState::ThreadLocal);
|
|
}
|
|
|
|
// Mark the slot as used
|
|
tls_slots[available_page].set(available_slot);
|
|
thread->tls_address = Memory::TLS_AREA_VADDR + available_page * Memory::PAGE_SIZE +
|
|
available_slot * Memory::TLS_ENTRY_SIZE;
|
|
|
|
// TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used
|
|
// to initialize the context
|
|
ResetThreadContext(thread->context, stack_top, entry_point, arg);
|
|
|
|
return MakeResult<SharedPtr<Thread>>(std::move(thread));
|
|
}
|
|
|
|
void Thread::SetPriority(u32 priority) {
|
|
ASSERT_MSG(priority <= THREADPRIO_LOWEST && priority >= THREADPRIO_HIGHEST,
|
|
"Invalid priority value.");
|
|
nominal_priority = priority;
|
|
UpdatePriority();
|
|
}
|
|
|
|
void Thread::BoostPriority(u32 priority) {
|
|
scheduler->SetThreadPriority(this, priority);
|
|
current_priority = priority;
|
|
}
|
|
|
|
SharedPtr<Thread> SetupMainThread(KernelCore& kernel, VAddr entry_point, u32 priority,
|
|
SharedPtr<Process> owner_process) {
|
|
// Setup page table so we can write to memory
|
|
SetCurrentPageTable(&Core::CurrentProcess()->vm_manager.page_table);
|
|
|
|
// Initialize new "main" thread
|
|
auto thread_res = Thread::Create(kernel, "main", entry_point, priority, 0, THREADPROCESSORID_0,
|
|
Memory::STACK_AREA_VADDR_END, std::move(owner_process));
|
|
|
|
SharedPtr<Thread> thread = std::move(thread_res).Unwrap();
|
|
|
|
// Register 1 must be a handle to the main thread
|
|
thread->guest_handle = kernel.HandleTable().Create(thread).Unwrap();
|
|
|
|
thread->context.cpu_registers[1] = thread->guest_handle;
|
|
|
|
// Threads by default are dormant, wake up the main thread so it runs when the scheduler fires
|
|
thread->ResumeFromWait();
|
|
|
|
return thread;
|
|
}
|
|
|
|
void Thread::SetWaitSynchronizationResult(ResultCode result) {
|
|
context.cpu_registers[0] = result.raw;
|
|
}
|
|
|
|
void Thread::SetWaitSynchronizationOutput(s32 output) {
|
|
context.cpu_registers[1] = output;
|
|
}
|
|
|
|
s32 Thread::GetWaitObjectIndex(WaitObject* object) const {
|
|
ASSERT_MSG(!wait_objects.empty(), "Thread is not waiting for anything");
|
|
auto match = std::find(wait_objects.rbegin(), wait_objects.rend(), object);
|
|
return static_cast<s32>(std::distance(match, wait_objects.rend()) - 1);
|
|
}
|
|
|
|
VAddr Thread::GetCommandBufferAddress() const {
|
|
// Offset from the start of TLS at which the IPC command buffer begins.
|
|
static constexpr int CommandHeaderOffset = 0x80;
|
|
return GetTLSAddress() + CommandHeaderOffset;
|
|
}
|
|
|
|
void Thread::AddMutexWaiter(SharedPtr<Thread> thread) {
|
|
if (thread->lock_owner == this) {
|
|
// If the thread is already waiting for this thread to release the mutex, ensure that the
|
|
// waiters list is consistent and return without doing anything.
|
|
auto itr = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
|
|
ASSERT(itr != wait_mutex_threads.end());
|
|
return;
|
|
}
|
|
|
|
// A thread can't wait on two different mutexes at the same time.
|
|
ASSERT(thread->lock_owner == nullptr);
|
|
|
|
// Ensure that the thread is not already in the list of mutex waiters
|
|
auto itr = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
|
|
ASSERT(itr == wait_mutex_threads.end());
|
|
|
|
thread->lock_owner = this;
|
|
wait_mutex_threads.emplace_back(std::move(thread));
|
|
UpdatePriority();
|
|
}
|
|
|
|
void Thread::RemoveMutexWaiter(SharedPtr<Thread> thread) {
|
|
ASSERT(thread->lock_owner == this);
|
|
|
|
// Ensure that the thread is in the list of mutex waiters
|
|
auto itr = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
|
|
ASSERT(itr != wait_mutex_threads.end());
|
|
|
|
boost::remove_erase(wait_mutex_threads, thread);
|
|
thread->lock_owner = nullptr;
|
|
UpdatePriority();
|
|
}
|
|
|
|
void Thread::UpdatePriority() {
|
|
// Find the highest priority among all the threads that are waiting for this thread's lock
|
|
u32 new_priority = nominal_priority;
|
|
for (const auto& thread : wait_mutex_threads) {
|
|
if (thread->nominal_priority < new_priority)
|
|
new_priority = thread->nominal_priority;
|
|
}
|
|
|
|
if (new_priority == current_priority)
|
|
return;
|
|
|
|
scheduler->SetThreadPriority(this, new_priority);
|
|
|
|
current_priority = new_priority;
|
|
|
|
// Recursively update the priority of the thread that depends on the priority of this one.
|
|
if (lock_owner)
|
|
lock_owner->UpdatePriority();
|
|
}
|
|
|
|
void Thread::ChangeCore(u32 core, u64 mask) {
|
|
ideal_core = core;
|
|
affinity_mask = mask;
|
|
|
|
if (status != ThreadStatus::Ready) {
|
|
return;
|
|
}
|
|
|
|
boost::optional<s32> new_processor_id{GetNextProcessorId(affinity_mask)};
|
|
|
|
if (!new_processor_id) {
|
|
new_processor_id = processor_id;
|
|
}
|
|
if (ideal_core != -1 &&
|
|
Core::System::GetInstance().Scheduler(ideal_core)->GetCurrentThread() == nullptr) {
|
|
new_processor_id = ideal_core;
|
|
}
|
|
|
|
ASSERT(*new_processor_id < 4);
|
|
|
|
// Add thread to new core's scheduler
|
|
auto& next_scheduler = Core::System::GetInstance().Scheduler(*new_processor_id);
|
|
|
|
if (*new_processor_id != processor_id) {
|
|
// Remove thread from previous core's scheduler
|
|
scheduler->RemoveThread(this);
|
|
next_scheduler->AddThread(this, current_priority);
|
|
}
|
|
|
|
processor_id = *new_processor_id;
|
|
|
|
// If the thread was ready, unschedule from the previous core and schedule on the new core
|
|
scheduler->UnscheduleThread(this, current_priority);
|
|
next_scheduler->ScheduleThread(this, current_priority);
|
|
|
|
// Change thread's scheduler
|
|
scheduler = next_scheduler;
|
|
|
|
Core::System::GetInstance().CpuCore(processor_id).PrepareReschedule();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/**
|
|
* Gets the current thread
|
|
*/
|
|
Thread* GetCurrentThread() {
|
|
return Core::System::GetInstance().CurrentScheduler().GetCurrentThread();
|
|
}
|
|
|
|
} // namespace Kernel
|