Subv 8634b8cb83 Threading: Reworked the way our scheduler works.
Threads will now be awakened when the objects they're waiting on are signaled, instead of repeating the WaitSynchronization call every now and then.

The scheduler is now called once after every SVC call, and once after a thread is awakened from sleep by its timeout callback.

This new implementation is based off reverse-engineering of the real kernel.

See https://gist.github.com/Subv/02f29bd9f1e5deb7aceea1e8f019c8f4 for a more detailed description of how the real kernel handles rescheduling.
2016-12-03 22:38:14 -05:00

205 lines
6.4 KiB
C++

// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/hle/config_mem.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/timer.h"
#include "core/hle/shared_page.h"
namespace Kernel {
unsigned int Object::next_object_id;
HandleTable g_handle_table;
void WaitObject::AddWaitingThread(SharedPtr<Thread> thread) {
auto itr = std::find(waiting_threads.begin(), waiting_threads.end(), thread);
if (itr == waiting_threads.end())
waiting_threads.push_back(std::move(thread));
}
void WaitObject::RemoveWaitingThread(Thread* thread) {
auto itr = std::find(waiting_threads.begin(), waiting_threads.end(), thread);
if (itr != waiting_threads.end())
waiting_threads.erase(itr);
}
SharedPtr<Thread> WaitObject::GetHighestPriorityReadyThread() {
// Remove the threads that are ready or already running from our waitlist
waiting_threads.erase(std::remove_if(waiting_threads.begin(), waiting_threads.end(), [](SharedPtr<Thread> thread) -> bool {
return thread->status == THREADSTATUS_RUNNING || thread->status == THREADSTATUS_READY;
}), waiting_threads.end());
if (waiting_threads.empty())
return nullptr;
auto candidate_threads = waiting_threads;
// Eliminate all threads that are waiting on more than one object, and not all of them are ready
candidate_threads.erase(std::remove_if(candidate_threads.begin(), candidate_threads.end(), [](SharedPtr<Thread> thread) -> bool {
for (auto object : thread->wait_objects)
if (object->ShouldWait())
return true;
return false;
}), candidate_threads.end());
// Return the thread with the lowest priority value (The one with the highest priority)
auto thread_itr = std::min_element(candidate_threads.begin(), candidate_threads.end(), [](const SharedPtr<Thread>& lhs, const SharedPtr<Thread>& rhs) {
return lhs->current_priority < rhs->current_priority;
});
if (thread_itr == candidate_threads.end())
return nullptr;
return *thread_itr;
}
void WaitObject::WakeupAllWaitingThreads() {
// Wake up all threads that can be awoken, in priority order
while (auto thread = GetHighestPriorityReadyThread()) {
if (thread->wait_objects.empty()) {
Acquire();
// Set the output index of the WaitSynchronizationN call to the index of this object.
if (thread->wait_set_output) {
thread->SetWaitSynchronizationOutput(thread->GetWaitObjectIndex(this));
thread->wait_set_output = false;
}
} else {
for (auto object : thread->wait_objects) {
object->Acquire();
// Remove the thread from the object's waitlist
object->RemoveWaitingThread(thread.get());
}
// Note: This case doesn't update the output index of WaitSynchronizationN.
// Clear the thread's waitlist
thread->wait_objects.clear();
}
// Set the result of the call to WaitSynchronization to RESULT_SUCCESS
thread->SetWaitSynchronizationResult(RESULT_SUCCESS);
thread->ResumeFromWait();
// Note: Removing the thread from the object's waitlist will be done by GetHighestPriorityReadyThread
}
}
const std::vector<SharedPtr<Thread>>& WaitObject::GetWaitingThreads() const {
return waiting_threads;
}
HandleTable::HandleTable() {
next_generation = 1;
Clear();
}
ResultVal<Handle> HandleTable::Create(SharedPtr<Object> obj) {
DEBUG_ASSERT(obj != nullptr);
u16 slot = next_free_slot;
if (slot >= generations.size()) {
LOG_ERROR(Kernel, "Unable to allocate Handle, too many slots in use.");
return ERR_OUT_OF_HANDLES;
}
next_free_slot = generations[slot];
u16 generation = next_generation++;
// Overflow count so it fits in the 15 bits dedicated to the generation in the handle.
// CTR-OS doesn't use generation 0, so skip straight to 1.
if (next_generation >= (1 << 15))
next_generation = 1;
generations[slot] = generation;
objects[slot] = std::move(obj);
Handle handle = generation | (slot << 15);
return MakeResult<Handle>(handle);
}
ResultVal<Handle> HandleTable::Duplicate(Handle handle) {
SharedPtr<Object> object = GetGeneric(handle);
if (object == nullptr) {
LOG_ERROR(Kernel, "Tried to duplicate invalid handle: %08X", handle);
return ERR_INVALID_HANDLE;
}
return Create(std::move(object));
}
ResultCode HandleTable::Close(Handle handle) {
if (!IsValid(handle))
return ERR_INVALID_HANDLE;
u16 slot = GetSlot(handle);
objects[slot] = nullptr;
generations[slot] = next_free_slot;
next_free_slot = slot;
return RESULT_SUCCESS;
}
bool HandleTable::IsValid(Handle handle) const {
size_t slot = GetSlot(handle);
u16 generation = GetGeneration(handle);
return slot < MAX_COUNT && objects[slot] != nullptr && generations[slot] == generation;
}
SharedPtr<Object> HandleTable::GetGeneric(Handle handle) const {
if (handle == CurrentThread) {
return GetCurrentThread();
} else if (handle == CurrentProcess) {
return g_current_process;
}
if (!IsValid(handle)) {
return nullptr;
}
return objects[GetSlot(handle)];
}
void HandleTable::Clear() {
for (u16 i = 0; i < MAX_COUNT; ++i) {
generations[i] = i + 1;
objects[i] = nullptr;
}
next_free_slot = 0;
}
/// Initialize the kernel
void Init(u32 system_mode) {
ConfigMem::Init();
SharedPage::Init();
Kernel::MemoryInit(system_mode);
Kernel::ResourceLimitsInit();
Kernel::ThreadingInit();
Kernel::TimersInit();
Object::next_object_id = 0;
// TODO(Subv): Start the process ids from 10 for now, as lower PIDs are
// reserved for low-level services
Process::next_process_id = 10;
}
/// Shutdown the kernel
void Shutdown() {
g_handle_table.Clear(); // Free all kernel objects
Kernel::ThreadingShutdown();
g_current_process = nullptr;
Kernel::TimersShutdown();
Kernel::ResourceLimitsShutdown();
Kernel::MemoryShutdown();
}
} // namespace