yuzu-android/src/core/hle/kernel/scheduler.cpp

542 lines
20 KiB
C++

// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
//
// SelectThreads, Yield functions originally by TuxSH.
// licensed under GPLv2 or later under exception provided by the author.
#include <algorithm>
#include <set>
#include <unordered_set>
#include <utility>
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/time_manager.h"
namespace Kernel {
GlobalScheduler::GlobalScheduler(KernelCore& kernel) : kernel{kernel} {}
GlobalScheduler::~GlobalScheduler() = default;
void GlobalScheduler::AddThread(std::shared_ptr<Thread> thread) {
thread_list.push_back(std::move(thread));
}
void GlobalScheduler::RemoveThread(std::shared_ptr<Thread> thread) {
thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread),
thread_list.end());
}
void GlobalScheduler::UnloadThread(std::size_t core) {
Scheduler& sched = kernel.Scheduler(core);
sched.UnloadThread();
}
void GlobalScheduler::SelectThread(std::size_t core) {
const auto update_thread = [](Thread* thread, Scheduler& sched) {
if (thread != sched.selected_thread.get()) {
if (thread == nullptr) {
++sched.idle_selection_count;
}
sched.selected_thread = SharedFrom(thread);
}
sched.is_context_switch_pending = sched.selected_thread != sched.current_thread;
std::atomic_thread_fence(std::memory_order_seq_cst);
};
Scheduler& sched = kernel.Scheduler(core);
Thread* current_thread = nullptr;
// Step 1: Get top thread in schedule queue.
current_thread = scheduled_queue[core].empty() ? nullptr : scheduled_queue[core].front();
if (current_thread) {
update_thread(current_thread, sched);
return;
}
// Step 2: Try selecting a suggested thread.
Thread* winner = nullptr;
std::set<s32> sug_cores;
for (auto thread : suggested_queue[core]) {
s32 this_core = thread->GetProcessorID();
Thread* thread_on_core = nullptr;
if (this_core >= 0) {
thread_on_core = scheduled_queue[this_core].front();
}
if (this_core < 0 || thread != thread_on_core) {
winner = thread;
break;
}
sug_cores.insert(this_core);
}
// if we got a suggested thread, select it, else do a second pass.
if (winner && winner->GetPriority() > 2) {
if (winner->IsRunning()) {
UnloadThread(static_cast<u32>(winner->GetProcessorID()));
}
TransferToCore(winner->GetPriority(), static_cast<s32>(core), winner);
update_thread(winner, sched);
return;
}
// Step 3: Select a suggested thread from another core
for (auto& src_core : sug_cores) {
auto it = scheduled_queue[src_core].begin();
it++;
if (it != scheduled_queue[src_core].end()) {
Thread* thread_on_core = scheduled_queue[src_core].front();
Thread* to_change = *it;
if (thread_on_core->IsRunning() || to_change->IsRunning()) {
UnloadThread(static_cast<u32>(src_core));
}
TransferToCore(thread_on_core->GetPriority(), static_cast<s32>(core), thread_on_core);
current_thread = thread_on_core;
break;
}
}
update_thread(current_thread, sched);
}
bool GlobalScheduler::YieldThread(Thread* yielding_thread) {
// Note: caller should use critical section, etc.
const u32 core_id = static_cast<u32>(yielding_thread->GetProcessorID());
const u32 priority = yielding_thread->GetPriority();
// Yield the thread
const Thread* const winner = scheduled_queue[core_id].front(priority);
ASSERT_MSG(yielding_thread == winner, "Thread yielding without being in front");
scheduled_queue[core_id].yield(priority);
return AskForReselectionOrMarkRedundant(yielding_thread, winner);
}
bool GlobalScheduler::YieldThreadAndBalanceLoad(Thread* yielding_thread) {
// Note: caller should check if !thread.IsSchedulerOperationRedundant and use critical section,
// etc.
const u32 core_id = static_cast<u32>(yielding_thread->GetProcessorID());
const u32 priority = yielding_thread->GetPriority();
// Yield the thread
ASSERT_MSG(yielding_thread == scheduled_queue[core_id].front(priority),
"Thread yielding without being in front");
scheduled_queue[core_id].yield(priority);
std::array<Thread*, Core::Hardware::NUM_CPU_CORES> current_threads;
for (std::size_t i = 0; i < current_threads.size(); i++) {
current_threads[i] = scheduled_queue[i].empty() ? nullptr : scheduled_queue[i].front();
}
Thread* next_thread = scheduled_queue[core_id].front(priority);
Thread* winner = nullptr;
for (auto& thread : suggested_queue[core_id]) {
const s32 source_core = thread->GetProcessorID();
if (source_core >= 0) {
if (current_threads[source_core] != nullptr) {
if (thread == current_threads[source_core] ||
current_threads[source_core]->GetPriority() < min_regular_priority) {
continue;
}
}
}
if (next_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks() ||
next_thread->GetPriority() < thread->GetPriority()) {
if (thread->GetPriority() <= priority) {
winner = thread;
break;
}
}
}
if (winner != nullptr) {
if (winner != yielding_thread) {
if (winner->IsRunning()) {
UnloadThread(static_cast<u32>(winner->GetProcessorID()));
}
TransferToCore(winner->GetPriority(), s32(core_id), winner);
}
} else {
winner = next_thread;
}
return AskForReselectionOrMarkRedundant(yielding_thread, winner);
}
bool GlobalScheduler::YieldThreadAndWaitForLoadBalancing(Thread* yielding_thread) {
// Note: caller should check if !thread.IsSchedulerOperationRedundant and use critical section,
// etc.
Thread* winner = nullptr;
const u32 core_id = static_cast<u32>(yielding_thread->GetProcessorID());
// Remove the thread from its scheduled mlq, put it on the corresponding "suggested" one instead
TransferToCore(yielding_thread->GetPriority(), -1, yielding_thread);
// If the core is idle, perform load balancing, excluding the threads that have just used this
// function...
if (scheduled_queue[core_id].empty()) {
// Here, "current_threads" is calculated after the ""yield"", unlike yield -1
std::array<Thread*, Core::Hardware::NUM_CPU_CORES> current_threads;
for (std::size_t i = 0; i < current_threads.size(); i++) {
current_threads[i] = scheduled_queue[i].empty() ? nullptr : scheduled_queue[i].front();
}
for (auto& thread : suggested_queue[core_id]) {
const s32 source_core = thread->GetProcessorID();
if (source_core < 0 || thread == current_threads[source_core]) {
continue;
}
if (current_threads[source_core] == nullptr ||
current_threads[source_core]->GetPriority() >= min_regular_priority) {
winner = thread;
}
break;
}
if (winner != nullptr) {
if (winner != yielding_thread) {
if (winner->IsRunning()) {
UnloadThread(static_cast<u32>(winner->GetProcessorID()));
}
TransferToCore(winner->GetPriority(), static_cast<s32>(core_id), winner);
}
} else {
winner = yielding_thread;
}
}
return AskForReselectionOrMarkRedundant(yielding_thread, winner);
}
void GlobalScheduler::PreemptThreads() {
for (std::size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
const u32 priority = preemption_priorities[core_id];
if (scheduled_queue[core_id].size(priority) > 0) {
scheduled_queue[core_id].front(priority)->IncrementYieldCount();
scheduled_queue[core_id].yield(priority);
if (scheduled_queue[core_id].size(priority) > 1) {
scheduled_queue[core_id].front(priority)->IncrementYieldCount();
}
}
Thread* current_thread =
scheduled_queue[core_id].empty() ? nullptr : scheduled_queue[core_id].front();
Thread* winner = nullptr;
for (auto& thread : suggested_queue[core_id]) {
const s32 source_core = thread->GetProcessorID();
if (thread->GetPriority() != priority) {
continue;
}
if (source_core >= 0) {
Thread* next_thread = scheduled_queue[source_core].empty()
? nullptr
: scheduled_queue[source_core].front();
if (next_thread != nullptr && next_thread->GetPriority() < 2) {
break;
}
if (next_thread == thread) {
continue;
}
}
if (current_thread != nullptr &&
current_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks()) {
winner = thread;
break;
}
}
if (winner != nullptr) {
if (winner->IsRunning()) {
UnloadThread(static_cast<u32>(winner->GetProcessorID()));
}
TransferToCore(winner->GetPriority(), s32(core_id), winner);
current_thread =
winner->GetPriority() <= current_thread->GetPriority() ? winner : current_thread;
}
if (current_thread != nullptr && current_thread->GetPriority() > priority) {
for (auto& thread : suggested_queue[core_id]) {
const s32 source_core = thread->GetProcessorID();
if (thread->GetPriority() < priority) {
continue;
}
if (source_core >= 0) {
Thread* next_thread = scheduled_queue[source_core].empty()
? nullptr
: scheduled_queue[source_core].front();
if (next_thread != nullptr && next_thread->GetPriority() < 2) {
break;
}
if (next_thread == thread) {
continue;
}
}
if (current_thread != nullptr &&
current_thread->GetLastRunningTicks() >= thread->GetLastRunningTicks()) {
winner = thread;
break;
}
}
if (winner != nullptr) {
if (winner->IsRunning()) {
UnloadThread(static_cast<u32>(winner->GetProcessorID()));
}
TransferToCore(winner->GetPriority(), s32(core_id), winner);
current_thread = winner;
}
}
is_reselection_pending.store(true, std::memory_order_release);
}
}
void GlobalScheduler::Suggest(u32 priority, std::size_t core, Thread* thread) {
suggested_queue[core].add(thread, priority);
}
void GlobalScheduler::Unsuggest(u32 priority, std::size_t core, Thread* thread) {
suggested_queue[core].remove(thread, priority);
}
void GlobalScheduler::Schedule(u32 priority, std::size_t core, Thread* thread) {
ASSERT_MSG(thread->GetProcessorID() == s32(core), "Thread must be assigned to this core.");
scheduled_queue[core].add(thread, priority);
}
void GlobalScheduler::SchedulePrepend(u32 priority, std::size_t core, Thread* thread) {
ASSERT_MSG(thread->GetProcessorID() == s32(core), "Thread must be assigned to this core.");
scheduled_queue[core].add(thread, priority, false);
}
void GlobalScheduler::Reschedule(u32 priority, std::size_t core, Thread* thread) {
scheduled_queue[core].remove(thread, priority);
scheduled_queue[core].add(thread, priority);
}
void GlobalScheduler::Unschedule(u32 priority, std::size_t core, Thread* thread) {
scheduled_queue[core].remove(thread, priority);
}
void GlobalScheduler::TransferToCore(u32 priority, s32 destination_core, Thread* thread) {
const bool schedulable = thread->GetPriority() < THREADPRIO_COUNT;
const s32 source_core = thread->GetProcessorID();
if (source_core == destination_core || !schedulable) {
return;
}
thread->SetProcessorID(destination_core);
if (source_core >= 0) {
Unschedule(priority, static_cast<u32>(source_core), thread);
}
if (destination_core >= 0) {
Unsuggest(priority, static_cast<u32>(destination_core), thread);
Schedule(priority, static_cast<u32>(destination_core), thread);
}
if (source_core >= 0) {
Suggest(priority, static_cast<u32>(source_core), thread);
}
}
bool GlobalScheduler::AskForReselectionOrMarkRedundant(Thread* current_thread,
const Thread* winner) {
if (current_thread == winner) {
current_thread->IncrementYieldCount();
return true;
} else {
is_reselection_pending.store(true, std::memory_order_release);
return false;
}
}
void GlobalScheduler::Shutdown() {
for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) {
scheduled_queue[core].clear();
suggested_queue[core].clear();
}
thread_list.clear();
}
void GlobalScheduler::Lock() {
Core::EmuThreadHandle current_thread = kernel.GetCurrentEmuThreadID();
if (current_thread == current_owner) {
++scope_lock;
} else {
inner_lock.lock();
current_owner = current_thread;
ASSERT(current_owner != Core::EmuThreadHandle::InvalidHandle());
scope_lock = 1;
}
}
void GlobalScheduler::Unlock() {
if (--scope_lock != 0) {
ASSERT(scope_lock > 0);
return;
}
for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
SelectThread(i);
}
current_owner = Core::EmuThreadHandle::InvalidHandle();
scope_lock = 1;
inner_lock.unlock();
// TODO(Blinkhawk): Setup the interrupts and change context on current core.
}
Scheduler::Scheduler(Core::System& system, std::size_t core_id)
: system{system}, core_id{core_id} {}
Scheduler::~Scheduler() = default;
bool Scheduler::HaveReadyThreads() const {
return system.GlobalScheduler().HaveReadyThreads(core_id);
}
Thread* Scheduler::GetCurrentThread() const {
return current_thread.get();
}
Thread* Scheduler::GetSelectedThread() const {
return selected_thread.get();
}
void Scheduler::SelectThreads() {
system.GlobalScheduler().SelectThread(core_id);
}
u64 Scheduler::GetLastContextSwitchTicks() const {
return last_context_switch_time;
}
void Scheduler::TryDoContextSwitch() {
if (is_context_switch_pending) {
SwitchContext();
}
}
void Scheduler::UnloadThread() {
Thread* const previous_thread = GetCurrentThread();
Process* const previous_process = system.Kernel().CurrentProcess();
UpdateLastContextSwitchTime(previous_thread, previous_process);
// Save context for previous thread
if (previous_thread) {
system.ArmInterface(core_id).SaveContext(previous_thread->GetContext32());
system.ArmInterface(core_id).SaveContext(previous_thread->GetContext64());
// Save the TPIDR_EL0 system register in case it was modified.
previous_thread->SetTPIDR_EL0(system.ArmInterface(core_id).GetTPIDR_EL0());
if (previous_thread->GetStatus() == ThreadStatus::Running) {
// This is only the case when a reschedule is triggered without the current thread
// yielding execution (i.e. an event triggered, system core time-sliced, etc)
previous_thread->SetStatus(ThreadStatus::Ready);
}
previous_thread->SetIsRunning(false);
}
current_thread = nullptr;
}
void Scheduler::SwitchContext() {
Thread* const previous_thread = GetCurrentThread();
Thread* const new_thread = GetSelectedThread();
is_context_switch_pending = false;
if (new_thread == previous_thread) {
return;
}
Process* const previous_process = system.Kernel().CurrentProcess();
UpdateLastContextSwitchTime(previous_thread, previous_process);
// Save context for previous thread
if (previous_thread) {
system.ArmInterface(core_id).SaveContext(previous_thread->GetContext32());
system.ArmInterface(core_id).SaveContext(previous_thread->GetContext64());
// Save the TPIDR_EL0 system register in case it was modified.
previous_thread->SetTPIDR_EL0(system.ArmInterface(core_id).GetTPIDR_EL0());
if (previous_thread->GetStatus() == ThreadStatus::Running) {
// This is only the case when a reschedule is triggered without the current thread
// yielding execution (i.e. an event triggered, system core time-sliced, etc)
previous_thread->SetStatus(ThreadStatus::Ready);
}
previous_thread->SetIsRunning(false);
}
// Load context of new thread
if (new_thread) {
ASSERT_MSG(new_thread->GetProcessorID() == s32(this->core_id),
"Thread must be assigned to this core.");
ASSERT_MSG(new_thread->GetStatus() == ThreadStatus::Ready,
"Thread must be ready to become running.");
// Cancel any outstanding wakeup events for this thread
new_thread->CancelWakeupTimer();
current_thread = SharedFrom(new_thread);
new_thread->SetStatus(ThreadStatus::Running);
new_thread->SetIsRunning(true);
auto* const thread_owner_process = current_thread->GetOwnerProcess();
if (previous_process != thread_owner_process) {
system.Kernel().MakeCurrentProcess(thread_owner_process);
}
system.ArmInterface(core_id).LoadContext(new_thread->GetContext32());
system.ArmInterface(core_id).LoadContext(new_thread->GetContext64());
system.ArmInterface(core_id).SetTlsAddress(new_thread->GetTLSAddress());
system.ArmInterface(core_id).SetTPIDR_EL0(new_thread->GetTPIDR_EL0());
} else {
current_thread = nullptr;
// Note: We do not reset the current process and current page table when idling because
// technically we haven't changed processes, our threads are just paused.
}
}
void Scheduler::UpdateLastContextSwitchTime(Thread* thread, Process* process) {
const u64 prev_switch_ticks = last_context_switch_time;
const u64 most_recent_switch_ticks = system.CoreTiming().GetTicks();
const u64 update_ticks = most_recent_switch_ticks - prev_switch_ticks;
if (thread != nullptr) {
thread->UpdateCPUTimeTicks(update_ticks);
}
if (process != nullptr) {
process->UpdateCPUTimeTicks(update_ticks);
}
last_context_switch_time = most_recent_switch_ticks;
}
void Scheduler::Shutdown() {
current_thread = nullptr;
selected_thread = nullptr;
}
SchedulerLock::SchedulerLock(KernelCore& kernel) : kernel{kernel} {
kernel.GlobalScheduler().Lock();
}
SchedulerLock::~SchedulerLock() {
kernel.GlobalScheduler().Unlock();
}
SchedulerLockAndSleep::SchedulerLockAndSleep(KernelCore& kernel, Handle& event_handle,
Thread* time_task, s64 nanoseconds)
: SchedulerLock{kernel}, event_handle{event_handle}, time_task{time_task}, nanoseconds{
nanoseconds} {
event_handle = InvalidHandle;
}
SchedulerLockAndSleep::~SchedulerLockAndSleep() {
if (sleep_cancelled) {
return;
}
auto& time_manager = kernel.TimeManager();
time_manager.ScheduleTimeEvent(event_handle, time_task, nanoseconds);
}
} // namespace Kernel