651 lines
26 KiB
C++

// SPDX-FileCopyrightText: 2018 Citra Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <random>
#include <boost/asio.hpp>
#include <fmt/format.h>
#include "common/logging/log.h"
#include "common/param_package.h"
#include "common/settings.h"
#include "input_common/drivers/udp_client.h"
#include "input_common/helpers/udp_protocol.h"
using boost::asio::ip::udp;
namespace InputCommon::CemuhookUDP {
struct SocketCallback {
std::function<void(Response::Version)> version;
std::function<void(Response::PortInfo)> port_info;
std::function<void(Response::PadData)> pad_data;
};
class Socket {
public:
using clock = std::chrono::system_clock;
explicit Socket(const std::string& host, u16 port, SocketCallback callback_)
: callback(std::move(callback_)), timer(io_service),
socket(io_service, udp::endpoint(udp::v4(), 0)), client_id(GenerateRandomClientId()) {
boost::system::error_code ec{};
auto ipv4 = boost::asio::ip::make_address_v4(host, ec);
if (ec.value() != boost::system::errc::success) {
LOG_ERROR(Input, "Invalid IPv4 address \"{}\" provided to socket", host);
ipv4 = boost::asio::ip::address_v4{};
}
send_endpoint = {udp::endpoint(ipv4, port)};
}
void Stop() {
io_service.stop();
}
void Loop() {
io_service.run();
}
void StartSend(const clock::time_point& from) {
timer.expires_at(from + std::chrono::seconds(3));
timer.async_wait([this](const boost::system::error_code& error) { HandleSend(error); });
}
void StartReceive() {
socket.async_receive_from(
boost::asio::buffer(receive_buffer), receive_endpoint,
[this](const boost::system::error_code& error, std::size_t bytes_transferred) {
HandleReceive(error, bytes_transferred);
});
}
private:
u32 GenerateRandomClientId() const {
std::random_device device;
return device();
}
void HandleReceive(const boost::system::error_code&, std::size_t bytes_transferred) {
if (auto type = Response::Validate(receive_buffer.data(), bytes_transferred)) {
switch (*type) {
case Type::Version: {
Response::Version version;
std::memcpy(&version, &receive_buffer[sizeof(Header)], sizeof(Response::Version));
callback.version(std::move(version));
break;
}
case Type::PortInfo: {
Response::PortInfo port_info;
std::memcpy(&port_info, &receive_buffer[sizeof(Header)],
sizeof(Response::PortInfo));
callback.port_info(std::move(port_info));
break;
}
case Type::PadData: {
Response::PadData pad_data;
std::memcpy(&pad_data, &receive_buffer[sizeof(Header)], sizeof(Response::PadData));
callback.pad_data(std::move(pad_data));
break;
}
}
}
StartReceive();
}
void HandleSend(const boost::system::error_code&) {
boost::system::error_code _ignored{};
// Send a request for getting port info for the pad
const Request::PortInfo port_info{4, {0, 1, 2, 3}};
const auto port_message = Request::Create(port_info, client_id);
std::memcpy(&send_buffer1, &port_message, PORT_INFO_SIZE);
socket.send_to(boost::asio::buffer(send_buffer1), send_endpoint, {}, _ignored);
// Send a request for getting pad data for the pad
const Request::PadData pad_data{
Request::RegisterFlags::AllPads,
0,
EMPTY_MAC_ADDRESS,
};
const auto pad_message = Request::Create(pad_data, client_id);
std::memcpy(send_buffer2.data(), &pad_message, PAD_DATA_SIZE);
socket.send_to(boost::asio::buffer(send_buffer2), send_endpoint, {}, _ignored);
StartSend(timer.expiry());
}
SocketCallback callback;
boost::asio::io_service io_service;
boost::asio::basic_waitable_timer<clock> timer;
udp::socket socket;
const u32 client_id;
static constexpr std::size_t PORT_INFO_SIZE = sizeof(Message<Request::PortInfo>);
static constexpr std::size_t PAD_DATA_SIZE = sizeof(Message<Request::PadData>);
std::array<u8, PORT_INFO_SIZE> send_buffer1;
std::array<u8, PAD_DATA_SIZE> send_buffer2;
udp::endpoint send_endpoint;
std::array<u8, MAX_PACKET_SIZE> receive_buffer;
udp::endpoint receive_endpoint;
};
static void SocketLoop(Socket* socket) {
socket->StartReceive();
socket->StartSend(Socket::clock::now());
socket->Loop();
}
UDPClient::UDPClient(std::string input_engine_) : InputEngine(std::move(input_engine_)) {
LOG_INFO(Input, "Udp Initialization started");
ReloadSockets();
}
UDPClient::~UDPClient() {
Reset();
}
UDPClient::ClientConnection::ClientConnection() = default;
UDPClient::ClientConnection::~ClientConnection() = default;
void UDPClient::ReloadSockets() {
Reset();
std::stringstream servers_ss(Settings::values.udp_input_servers.GetValue());
std::string server_token;
std::size_t client = 0;
while (std::getline(servers_ss, server_token, ',')) {
if (client == MAX_UDP_CLIENTS) {
break;
}
std::stringstream server_ss(server_token);
std::string token;
std::getline(server_ss, token, ':');
std::string udp_input_address = token;
std::getline(server_ss, token, ':');
char* temp;
const u16 udp_input_port = static_cast<u16>(std::strtol(token.c_str(), &temp, 0));
if (*temp != '\0') {
LOG_ERROR(Input, "Port number is not valid {}", token);
continue;
}
const std::size_t client_number = GetClientNumber(udp_input_address, udp_input_port);
if (client_number != MAX_UDP_CLIENTS) {
LOG_ERROR(Input, "Duplicated UDP servers found");
continue;
}
StartCommunication(client++, udp_input_address, udp_input_port);
}
}
std::size_t UDPClient::GetClientNumber(std::string_view host, u16 port) const {
for (std::size_t client = 0; client < clients.size(); client++) {
if (clients[client].active == -1) {
continue;
}
if (clients[client].host == host && clients[client].port == port) {
return client;
}
}
return MAX_UDP_CLIENTS;
}
Common::Input::BatteryLevel UDPClient::GetBatteryLevel(Response::Battery battery) const {
switch (battery) {
case Response::Battery::Dying:
return Common::Input::BatteryLevel::Empty;
case Response::Battery::Low:
return Common::Input::BatteryLevel::Critical;
case Response::Battery::Medium:
return Common::Input::BatteryLevel::Low;
case Response::Battery::High:
return Common::Input::BatteryLevel::Medium;
case Response::Battery::Full:
case Response::Battery::Charged:
return Common::Input::BatteryLevel::Full;
case Response::Battery::Charging:
default:
return Common::Input::BatteryLevel::Charging;
}
}
void UDPClient::OnVersion([[maybe_unused]] Response::Version data) {
LOG_TRACE(Input, "Version packet received: {}", data.version);
}
void UDPClient::OnPortInfo([[maybe_unused]] Response::PortInfo data) {
LOG_TRACE(Input, "PortInfo packet received: {}", data.model);
}
void UDPClient::OnPadData(Response::PadData data, std::size_t client) {
const std::size_t pad_index = (client * PADS_PER_CLIENT) + data.info.id;
if (pad_index >= pads.size()) {
LOG_ERROR(Input, "Invalid pad id {}", data.info.id);
return;
}
LOG_TRACE(Input, "PadData packet received");
if (data.packet_counter == pads[pad_index].packet_sequence) {
LOG_WARNING(
Input,
"PadData packet dropped because its stale info. Current count: {} Packet count: {}",
pads[pad_index].packet_sequence, data.packet_counter);
pads[pad_index].connected = false;
return;
}
clients[client].active = 1;
pads[pad_index].connected = true;
pads[pad_index].packet_sequence = data.packet_counter;
const auto now = std::chrono::steady_clock::now();
const auto time_difference = static_cast<u64>(
std::chrono::duration_cast<std::chrono::microseconds>(now - pads[pad_index].last_update)
.count());
pads[pad_index].last_update = now;
// Gyroscope values are not it the correct scale from better joy.
// Dividing by 312 allows us to make one full turn = 1 turn
// This must be a configurable valued called sensitivity
const float gyro_scale = 1.0f / 312.0f;
const BasicMotion motion{
.gyro_x = data.gyro.pitch * gyro_scale,
.gyro_y = data.gyro.roll * gyro_scale,
.gyro_z = -data.gyro.yaw * gyro_scale,
.accel_x = data.accel.x,
.accel_y = -data.accel.z,
.accel_z = data.accel.y,
.delta_timestamp = time_difference,
};
const PadIdentifier identifier = GetPadIdentifier(pad_index);
SetMotion(identifier, 0, motion);
for (std::size_t id = 0; id < data.touch.size(); ++id) {
const auto touch_pad = data.touch[id];
const auto touch_axis_x_id =
static_cast<int>(id == 0 ? PadAxes::Touch1X : PadAxes::Touch2X);
const auto touch_axis_y_id =
static_cast<int>(id == 0 ? PadAxes::Touch1Y : PadAxes::Touch2Y);
const auto touch_button_id =
static_cast<int>(id == 0 ? PadButton::Touch1 : PadButton::Touch2);
// TODO: Use custom calibration per device
const Common::ParamPackage touch_param(Settings::values.touch_device.GetValue());
const u16 min_x = static_cast<u16>(touch_param.Get("min_x", 100));
const u16 min_y = static_cast<u16>(touch_param.Get("min_y", 50));
const u16 max_x = static_cast<u16>(touch_param.Get("max_x", 1800));
const u16 max_y = static_cast<u16>(touch_param.Get("max_y", 850));
const f32 x =
static_cast<f32>(std::clamp(static_cast<u16>(touch_pad.x), min_x, max_x) - min_x) /
static_cast<f32>(max_x - min_x);
const f32 y =
static_cast<f32>(std::clamp(static_cast<u16>(touch_pad.y), min_y, max_y) - min_y) /
static_cast<f32>(max_y - min_y);
if (touch_pad.is_active) {
SetAxis(identifier, touch_axis_x_id, x);
SetAxis(identifier, touch_axis_y_id, y);
SetButton(identifier, touch_button_id, true);
continue;
}
SetAxis(identifier, touch_axis_x_id, 0);
SetAxis(identifier, touch_axis_y_id, 0);
SetButton(identifier, touch_button_id, false);
}
SetAxis(identifier, static_cast<int>(PadAxes::LeftStickX),
(data.left_stick_x - 127.0f) / 127.0f);
SetAxis(identifier, static_cast<int>(PadAxes::LeftStickY),
(data.left_stick_y - 127.0f) / 127.0f);
SetAxis(identifier, static_cast<int>(PadAxes::RightStickX),
(data.right_stick_x - 127.0f) / 127.0f);
SetAxis(identifier, static_cast<int>(PadAxes::RightStickY),
(data.right_stick_y - 127.0f) / 127.0f);
static constexpr std::array<PadButton, 16> buttons{
PadButton::Share, PadButton::L3, PadButton::R3, PadButton::Options,
PadButton::Up, PadButton::Right, PadButton::Down, PadButton::Left,
PadButton::L2, PadButton::R2, PadButton::L1, PadButton::R1,
PadButton::Triangle, PadButton::Circle, PadButton::Cross, PadButton::Square};
for (std::size_t i = 0; i < buttons.size(); ++i) {
const bool button_status = (data.digital_button & (1U << i)) != 0;
const int button = static_cast<int>(buttons[i]);
SetButton(identifier, button, button_status);
}
SetButton(identifier, static_cast<int>(PadButton::Home), data.home != 0);
SetButton(identifier, static_cast<int>(PadButton::TouchHardPress), data.touch_hard_press != 0);
SetBattery(identifier, GetBatteryLevel(data.info.battery));
}
void UDPClient::StartCommunication(std::size_t client, const std::string& host, u16 port) {
SocketCallback callback{[this](Response::Version version) { OnVersion(version); },
[this](Response::PortInfo info) { OnPortInfo(info); },
[this, client](Response::PadData data) { OnPadData(data, client); }};
LOG_INFO(Input, "Starting communication with UDP input server on {}:{}", host, port);
clients[client].uuid = GetHostUUID(host);
clients[client].host = host;
clients[client].port = port;
clients[client].active = 0;
clients[client].socket = std::make_unique<Socket>(host, port, callback);
clients[client].thread = std::thread{SocketLoop, clients[client].socket.get()};
for (std::size_t index = 0; index < PADS_PER_CLIENT; ++index) {
const PadIdentifier identifier = GetPadIdentifier(client * PADS_PER_CLIENT + index);
PreSetController(identifier);
}
}
PadIdentifier UDPClient::GetPadIdentifier(std::size_t pad_index) const {
const std::size_t client = pad_index / PADS_PER_CLIENT;
return {
.guid = clients[client].uuid,
.port = static_cast<std::size_t>(clients[client].port),
.pad = pad_index,
};
}
Common::UUID UDPClient::GetHostUUID(const std::string& host) const {
const auto ip = boost::asio::ip::make_address_v4(host);
const auto hex_host = fmt::format("00000000-0000-0000-0000-0000{:06x}", ip.to_uint());
return Common::UUID{hex_host};
}
void UDPClient::Reset() {
for (auto& client : clients) {
if (client.thread.joinable()) {
client.active = -1;
client.socket->Stop();
client.thread.join();
}
}
}
std::vector<Common::ParamPackage> UDPClient::GetInputDevices() const {
std::vector<Common::ParamPackage> devices;
if (!Settings::values.enable_udp_controller) {
return devices;
}
for (std::size_t client = 0; client < clients.size(); client++) {
if (clients[client].active != 1) {
continue;
}
for (std::size_t index = 0; index < PADS_PER_CLIENT; ++index) {
const std::size_t pad_index = client * PADS_PER_CLIENT + index;
if (!pads[pad_index].connected) {
continue;
}
const auto pad_identifier = GetPadIdentifier(pad_index);
Common::ParamPackage identifier{};
identifier.Set("engine", GetEngineName());
identifier.Set("display", fmt::format("UDP Controller {}", pad_identifier.pad));
identifier.Set("guid", pad_identifier.guid.RawString());
identifier.Set("port", static_cast<int>(pad_identifier.port));
identifier.Set("pad", static_cast<int>(pad_identifier.pad));
devices.emplace_back(identifier);
}
}
return devices;
}
ButtonMapping UDPClient::GetButtonMappingForDevice(const Common::ParamPackage& params) {
// This list excludes any button that can't be really mapped
static constexpr std::array<std::pair<Settings::NativeButton::Values, PadButton>, 20>
switch_to_dsu_button = {
std::pair{Settings::NativeButton::A, PadButton::Circle},
{Settings::NativeButton::B, PadButton::Cross},
{Settings::NativeButton::X, PadButton::Triangle},
{Settings::NativeButton::Y, PadButton::Square},
{Settings::NativeButton::Plus, PadButton::Options},
{Settings::NativeButton::Minus, PadButton::Share},
{Settings::NativeButton::DLeft, PadButton::Left},
{Settings::NativeButton::DUp, PadButton::Up},
{Settings::NativeButton::DRight, PadButton::Right},
{Settings::NativeButton::DDown, PadButton::Down},
{Settings::NativeButton::L, PadButton::L1},
{Settings::NativeButton::R, PadButton::R1},
{Settings::NativeButton::ZL, PadButton::L2},
{Settings::NativeButton::ZR, PadButton::R2},
{Settings::NativeButton::SL, PadButton::L2},
{Settings::NativeButton::SR, PadButton::R2},
{Settings::NativeButton::LStick, PadButton::L3},
{Settings::NativeButton::RStick, PadButton::R3},
{Settings::NativeButton::Home, PadButton::Home},
{Settings::NativeButton::Screenshot, PadButton::TouchHardPress},
};
if (!params.Has("guid") || !params.Has("port") || !params.Has("pad")) {
return {};
}
ButtonMapping mapping{};
for (const auto& [switch_button, dsu_button] : switch_to_dsu_button) {
Common::ParamPackage button_params{};
button_params.Set("engine", GetEngineName());
button_params.Set("guid", params.Get("guid", ""));
button_params.Set("port", params.Get("port", 0));
button_params.Set("pad", params.Get("pad", 0));
button_params.Set("button", static_cast<int>(dsu_button));
mapping.insert_or_assign(switch_button, std::move(button_params));
}
return mapping;
}
AnalogMapping UDPClient::GetAnalogMappingForDevice(const Common::ParamPackage& params) {
if (!params.Has("guid") || !params.Has("port") || !params.Has("pad")) {
return {};
}
AnalogMapping mapping = {};
Common::ParamPackage left_analog_params;
left_analog_params.Set("engine", GetEngineName());
left_analog_params.Set("guid", params.Get("guid", ""));
left_analog_params.Set("port", params.Get("port", 0));
left_analog_params.Set("pad", params.Get("pad", 0));
left_analog_params.Set("axis_x", static_cast<int>(PadAxes::LeftStickX));
left_analog_params.Set("axis_y", static_cast<int>(PadAxes::LeftStickY));
mapping.insert_or_assign(Settings::NativeAnalog::LStick, std::move(left_analog_params));
Common::ParamPackage right_analog_params;
right_analog_params.Set("engine", GetEngineName());
right_analog_params.Set("guid", params.Get("guid", ""));
right_analog_params.Set("port", params.Get("port", 0));
right_analog_params.Set("pad", params.Get("pad", 0));
right_analog_params.Set("axis_x", static_cast<int>(PadAxes::RightStickX));
right_analog_params.Set("axis_y", static_cast<int>(PadAxes::RightStickY));
mapping.insert_or_assign(Settings::NativeAnalog::RStick, std::move(right_analog_params));
return mapping;
}
MotionMapping UDPClient::GetMotionMappingForDevice(const Common::ParamPackage& params) {
if (!params.Has("guid") || !params.Has("port") || !params.Has("pad")) {
return {};
}
MotionMapping mapping = {};
Common::ParamPackage left_motion_params;
left_motion_params.Set("engine", GetEngineName());
left_motion_params.Set("guid", params.Get("guid", ""));
left_motion_params.Set("port", params.Get("port", 0));
left_motion_params.Set("pad", params.Get("pad", 0));
left_motion_params.Set("motion", 0);
Common::ParamPackage right_motion_params;
right_motion_params.Set("engine", GetEngineName());
right_motion_params.Set("guid", params.Get("guid", ""));
right_motion_params.Set("port", params.Get("port", 0));
right_motion_params.Set("pad", params.Get("pad", 0));
right_motion_params.Set("motion", 0);
mapping.insert_or_assign(Settings::NativeMotion::MotionLeft, std::move(left_motion_params));
mapping.insert_or_assign(Settings::NativeMotion::MotionRight, std::move(right_motion_params));
return mapping;
}
Common::Input::ButtonNames UDPClient::GetUIButtonName(const Common::ParamPackage& params) const {
PadButton button = static_cast<PadButton>(params.Get("button", 0));
switch (button) {
case PadButton::Left:
return Common::Input::ButtonNames::ButtonLeft;
case PadButton::Right:
return Common::Input::ButtonNames::ButtonRight;
case PadButton::Down:
return Common::Input::ButtonNames::ButtonDown;
case PadButton::Up:
return Common::Input::ButtonNames::ButtonUp;
case PadButton::L1:
return Common::Input::ButtonNames::L1;
case PadButton::L2:
return Common::Input::ButtonNames::L2;
case PadButton::L3:
return Common::Input::ButtonNames::L3;
case PadButton::R1:
return Common::Input::ButtonNames::R1;
case PadButton::R2:
return Common::Input::ButtonNames::R2;
case PadButton::R3:
return Common::Input::ButtonNames::R3;
case PadButton::Circle:
return Common::Input::ButtonNames::Circle;
case PadButton::Cross:
return Common::Input::ButtonNames::Cross;
case PadButton::Square:
return Common::Input::ButtonNames::Square;
case PadButton::Triangle:
return Common::Input::ButtonNames::Triangle;
case PadButton::Share:
return Common::Input::ButtonNames::Share;
case PadButton::Options:
return Common::Input::ButtonNames::Options;
case PadButton::Home:
return Common::Input::ButtonNames::Home;
case PadButton::Touch1:
case PadButton::Touch2:
case PadButton::TouchHardPress:
return Common::Input::ButtonNames::Touch;
default:
return Common::Input::ButtonNames::Undefined;
}
}
Common::Input::ButtonNames UDPClient::GetUIName(const Common::ParamPackage& params) const {
if (params.Has("button")) {
return GetUIButtonName(params);
}
if (params.Has("axis")) {
return Common::Input::ButtonNames::Value;
}
if (params.Has("motion")) {
return Common::Input::ButtonNames::Engine;
}
return Common::Input::ButtonNames::Invalid;
}
bool UDPClient::IsStickInverted(const Common::ParamPackage& params) {
if (!params.Has("guid") || !params.Has("port") || !params.Has("pad")) {
return false;
}
const auto x_axis = static_cast<PadAxes>(params.Get("axis_x", 0));
const auto y_axis = static_cast<PadAxes>(params.Get("axis_y", 0));
if (x_axis != PadAxes::LeftStickY && x_axis != PadAxes::RightStickY) {
return false;
}
if (y_axis != PadAxes::LeftStickX && y_axis != PadAxes::RightStickX) {
return false;
}
return true;
}
void TestCommunication(const std::string& host, u16 port,
const std::function<void()>& success_callback,
const std::function<void()>& failure_callback) {
std::thread([=] {
Common::Event success_event;
SocketCallback callback{
.version = [](Response::Version) {},
.port_info = [](Response::PortInfo) {},
.pad_data = [&](Response::PadData) { success_event.Set(); },
};
Socket socket{host, port, std::move(callback)};
std::thread worker_thread{SocketLoop, &socket};
const bool result =
success_event.WaitUntil(std::chrono::steady_clock::now() + std::chrono::seconds(10));
socket.Stop();
worker_thread.join();
if (result) {
success_callback();
} else {
failure_callback();
}
}).detach();
}
CalibrationConfigurationJob::CalibrationConfigurationJob(
const std::string& host, u16 port, std::function<void(Status)> status_callback,
std::function<void(u16, u16, u16, u16)> data_callback) {
std::thread([=, this] {
u16 min_x{UINT16_MAX};
u16 min_y{UINT16_MAX};
u16 max_x{};
u16 max_y{};
Status current_status{Status::Initialized};
SocketCallback callback{[](Response::Version) {}, [](Response::PortInfo) {},
[&](Response::PadData data) {
constexpr u16 CALIBRATION_THRESHOLD = 100;
if (current_status == Status::Initialized) {
// Receiving data means the communication is ready now
current_status = Status::Ready;
status_callback(current_status);
}
if (data.touch[0].is_active == 0) {
return;
}
LOG_DEBUG(Input, "Current touch: {} {}", data.touch[0].x,
data.touch[0].y);
min_x = std::min(min_x, static_cast<u16>(data.touch[0].x));
min_y = std::min(min_y, static_cast<u16>(data.touch[0].y));
if (current_status == Status::Ready) {
// First touch - min data (min_x/min_y)
current_status = Status::Stage1Completed;
status_callback(current_status);
}
if (data.touch[0].x - min_x > CALIBRATION_THRESHOLD &&
data.touch[0].y - min_y > CALIBRATION_THRESHOLD) {
// Set the current position as max value and finishes
// configuration
max_x = data.touch[0].x;
max_y = data.touch[0].y;
current_status = Status::Completed;
data_callback(min_x, min_y, max_x, max_y);
status_callback(current_status);
complete_event.Set();
}
}};
Socket socket{host, port, std::move(callback)};
std::thread worker_thread{SocketLoop, &socket};
complete_event.Wait();
socket.Stop();
worker_thread.join();
}).detach();
}
CalibrationConfigurationJob::~CalibrationConfigurationJob() {
Stop();
}
void CalibrationConfigurationJob::Stop() {
complete_event.Set();
}
} // namespace InputCommon::CemuhookUDP