mirror of
https://github.com/yuzu-emu/yuzu-android
synced 2025-01-06 04:11:20 -08:00
bd983414f6
Gets rid of the largest set of mutable global state within the core. This also paves a way for eliminating usages of GetInstance() on the System class as a follow-up. Note that no behavioral changes have been made, and this simply extracts the functionality into a class. This also has the benefit of making dependencies on the core timing functionality explicit within the relevant interfaces.
248 lines
9.2 KiB
C++
248 lines
9.2 KiB
C++
// Copyright 2016 Dolphin Emulator Project / 2017 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <catch2/catch.hpp>
|
|
|
|
#include <array>
|
|
#include <bitset>
|
|
#include <string>
|
|
#include "common/file_util.h"
|
|
#include "core/core.h"
|
|
#include "core/core_timing.h"
|
|
|
|
// Numbers are chosen randomly to make sure the correct one is given.
|
|
static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
|
|
static constexpr int MAX_SLICE_LENGTH = 20000; // Copied from CoreTiming internals
|
|
|
|
static std::bitset<CB_IDS.size()> callbacks_ran_flags;
|
|
static u64 expected_callback = 0;
|
|
static s64 lateness = 0;
|
|
|
|
template <unsigned int IDX>
|
|
void CallbackTemplate(u64 userdata, s64 cycles_late) {
|
|
static_assert(IDX < CB_IDS.size(), "IDX out of range");
|
|
callbacks_ran_flags.set(IDX);
|
|
REQUIRE(CB_IDS[IDX] == userdata);
|
|
REQUIRE(CB_IDS[IDX] == expected_callback);
|
|
REQUIRE(lateness == cycles_late);
|
|
}
|
|
|
|
struct ScopeInit final {
|
|
ScopeInit() {
|
|
core_timing.Initialize();
|
|
}
|
|
~ScopeInit() {
|
|
core_timing.Shutdown();
|
|
}
|
|
|
|
Core::Timing::CoreTiming core_timing;
|
|
};
|
|
|
|
static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, int downcount,
|
|
int expected_lateness = 0, int cpu_downcount = 0) {
|
|
callbacks_ran_flags = 0;
|
|
expected_callback = CB_IDS[idx];
|
|
lateness = expected_lateness;
|
|
|
|
// Pretend we executed X cycles of instructions.
|
|
core_timing.AddTicks(core_timing.GetDowncount() - cpu_downcount);
|
|
core_timing.Advance();
|
|
|
|
REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags);
|
|
REQUIRE(downcount == core_timing.GetDowncount());
|
|
}
|
|
|
|
TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
|
|
ScopeInit guard;
|
|
auto& core_timing = guard.core_timing;
|
|
|
|
Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
|
|
Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
|
|
Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>);
|
|
Core::Timing::EventType* cb_d = core_timing.RegisterEvent("callbackD", CallbackTemplate<3>);
|
|
Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", CallbackTemplate<4>);
|
|
|
|
// Enter slice 0
|
|
core_timing.Advance();
|
|
|
|
// D -> B -> C -> A -> E
|
|
core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
|
|
REQUIRE(1000 == core_timing.GetDowncount());
|
|
core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]);
|
|
REQUIRE(500 == core_timing.GetDowncount());
|
|
core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]);
|
|
REQUIRE(500 == core_timing.GetDowncount());
|
|
core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]);
|
|
REQUIRE(100 == core_timing.GetDowncount());
|
|
core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]);
|
|
REQUIRE(100 == core_timing.GetDowncount());
|
|
|
|
AdvanceAndCheck(core_timing, 3, 400);
|
|
AdvanceAndCheck(core_timing, 1, 300);
|
|
AdvanceAndCheck(core_timing, 2, 200);
|
|
AdvanceAndCheck(core_timing, 0, 200);
|
|
AdvanceAndCheck(core_timing, 4, MAX_SLICE_LENGTH);
|
|
}
|
|
|
|
TEST_CASE("CoreTiming[Threadsave]", "[core]") {
|
|
ScopeInit guard;
|
|
auto& core_timing = guard.core_timing;
|
|
|
|
Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
|
|
Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
|
|
Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>);
|
|
Core::Timing::EventType* cb_d = core_timing.RegisterEvent("callbackD", CallbackTemplate<3>);
|
|
Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", CallbackTemplate<4>);
|
|
|
|
// Enter slice 0
|
|
core_timing.Advance();
|
|
|
|
// D -> B -> C -> A -> E
|
|
core_timing.ScheduleEventThreadsafe(1000, cb_a, CB_IDS[0]);
|
|
// Manually force since ScheduleEventThreadsafe doesn't call it
|
|
core_timing.ForceExceptionCheck(1000);
|
|
REQUIRE(1000 == core_timing.GetDowncount());
|
|
core_timing.ScheduleEventThreadsafe(500, cb_b, CB_IDS[1]);
|
|
// Manually force since ScheduleEventThreadsafe doesn't call it
|
|
core_timing.ForceExceptionCheck(500);
|
|
REQUIRE(500 == core_timing.GetDowncount());
|
|
core_timing.ScheduleEventThreadsafe(800, cb_c, CB_IDS[2]);
|
|
// Manually force since ScheduleEventThreadsafe doesn't call it
|
|
core_timing.ForceExceptionCheck(800);
|
|
REQUIRE(500 == core_timing.GetDowncount());
|
|
core_timing.ScheduleEventThreadsafe(100, cb_d, CB_IDS[3]);
|
|
// Manually force since ScheduleEventThreadsafe doesn't call it
|
|
core_timing.ForceExceptionCheck(100);
|
|
REQUIRE(100 == core_timing.GetDowncount());
|
|
core_timing.ScheduleEventThreadsafe(1200, cb_e, CB_IDS[4]);
|
|
// Manually force since ScheduleEventThreadsafe doesn't call it
|
|
core_timing.ForceExceptionCheck(1200);
|
|
REQUIRE(100 == core_timing.GetDowncount());
|
|
|
|
AdvanceAndCheck(core_timing, 3, 400);
|
|
AdvanceAndCheck(core_timing, 1, 300);
|
|
AdvanceAndCheck(core_timing, 2, 200);
|
|
AdvanceAndCheck(core_timing, 0, 200);
|
|
AdvanceAndCheck(core_timing, 4, MAX_SLICE_LENGTH);
|
|
}
|
|
|
|
namespace SharedSlotTest {
|
|
static unsigned int counter = 0;
|
|
|
|
template <unsigned int ID>
|
|
void FifoCallback(u64 userdata, s64 cycles_late) {
|
|
static_assert(ID < CB_IDS.size(), "ID out of range");
|
|
callbacks_ran_flags.set(ID);
|
|
REQUIRE(CB_IDS[ID] == userdata);
|
|
REQUIRE(ID == counter);
|
|
REQUIRE(lateness == cycles_late);
|
|
++counter;
|
|
}
|
|
} // namespace SharedSlotTest
|
|
|
|
TEST_CASE("CoreTiming[SharedSlot]", "[core]") {
|
|
using namespace SharedSlotTest;
|
|
|
|
ScopeInit guard;
|
|
auto& core_timing = guard.core_timing;
|
|
|
|
Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", FifoCallback<0>);
|
|
Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", FifoCallback<1>);
|
|
Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", FifoCallback<2>);
|
|
Core::Timing::EventType* cb_d = core_timing.RegisterEvent("callbackD", FifoCallback<3>);
|
|
Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", FifoCallback<4>);
|
|
|
|
core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
|
|
core_timing.ScheduleEvent(1000, cb_b, CB_IDS[1]);
|
|
core_timing.ScheduleEvent(1000, cb_c, CB_IDS[2]);
|
|
core_timing.ScheduleEvent(1000, cb_d, CB_IDS[3]);
|
|
core_timing.ScheduleEvent(1000, cb_e, CB_IDS[4]);
|
|
|
|
// Enter slice 0
|
|
core_timing.Advance();
|
|
REQUIRE(1000 == core_timing.GetDowncount());
|
|
|
|
callbacks_ran_flags = 0;
|
|
counter = 0;
|
|
lateness = 0;
|
|
core_timing.AddTicks(core_timing.GetDowncount());
|
|
core_timing.Advance();
|
|
REQUIRE(MAX_SLICE_LENGTH == core_timing.GetDowncount());
|
|
REQUIRE(0x1FULL == callbacks_ran_flags.to_ullong());
|
|
}
|
|
|
|
TEST_CASE("Core::Timing[PredictableLateness]", "[core]") {
|
|
ScopeInit guard;
|
|
auto& core_timing = guard.core_timing;
|
|
|
|
Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
|
|
Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
|
|
|
|
// Enter slice 0
|
|
core_timing.Advance();
|
|
|
|
core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]);
|
|
core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]);
|
|
|
|
AdvanceAndCheck(core_timing, 0, 90, 10, -10); // (100 - 10)
|
|
AdvanceAndCheck(core_timing, 1, MAX_SLICE_LENGTH, 50, -50);
|
|
}
|
|
|
|
namespace ChainSchedulingTest {
|
|
static int reschedules = 0;
|
|
|
|
static void RescheduleCallback(Core::Timing::CoreTiming& core_timing, u64 userdata,
|
|
s64 cycles_late) {
|
|
--reschedules;
|
|
REQUIRE(reschedules >= 0);
|
|
REQUIRE(lateness == cycles_late);
|
|
|
|
if (reschedules > 0) {
|
|
core_timing.ScheduleEvent(1000, reinterpret_cast<Core::Timing::EventType*>(userdata),
|
|
userdata);
|
|
}
|
|
}
|
|
} // namespace ChainSchedulingTest
|
|
|
|
TEST_CASE("CoreTiming[ChainScheduling]", "[core]") {
|
|
using namespace ChainSchedulingTest;
|
|
|
|
ScopeInit guard;
|
|
auto& core_timing = guard.core_timing;
|
|
|
|
Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
|
|
Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
|
|
Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>);
|
|
Core::Timing::EventType* cb_rs = core_timing.RegisterEvent(
|
|
"callbackReschedule", [&core_timing](u64 userdata, s64 cycles_late) {
|
|
RescheduleCallback(core_timing, userdata, cycles_late);
|
|
});
|
|
|
|
// Enter slice 0
|
|
core_timing.Advance();
|
|
|
|
core_timing.ScheduleEvent(800, cb_a, CB_IDS[0]);
|
|
core_timing.ScheduleEvent(1000, cb_b, CB_IDS[1]);
|
|
core_timing.ScheduleEvent(2200, cb_c, CB_IDS[2]);
|
|
core_timing.ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs));
|
|
REQUIRE(800 == core_timing.GetDowncount());
|
|
|
|
reschedules = 3;
|
|
AdvanceAndCheck(core_timing, 0, 200); // cb_a
|
|
AdvanceAndCheck(core_timing, 1, 1000); // cb_b, cb_rs
|
|
REQUIRE(2 == reschedules);
|
|
|
|
core_timing.AddTicks(core_timing.GetDowncount());
|
|
core_timing.Advance(); // cb_rs
|
|
REQUIRE(1 == reschedules);
|
|
REQUIRE(200 == core_timing.GetDowncount());
|
|
|
|
AdvanceAndCheck(core_timing, 2, 800); // cb_c
|
|
|
|
core_timing.AddTicks(core_timing.GetDowncount());
|
|
core_timing.Advance(); // cb_rs
|
|
REQUIRE(0 == reschedules);
|
|
REQUIRE(MAX_SLICE_LENGTH == core_timing.GetDowncount());
|
|
}
|