yuzu-android/src/core/memory.cpp

648 lines
22 KiB
C++

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <array>
#include <cinttypes>
#include <cstring>
#include <boost/optional.hpp>
#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/swap.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/process.h"
#include "core/memory.h"
#include "core/memory_setup.h"
#include "video_core/renderer_base.h"
#include "video_core/video_core.h"
namespace Memory {
static std::array<u8, Memory::VRAM_SIZE> vram;
static std::array<u8, Memory::N3DS_EXTRA_RAM_SIZE> n3ds_extra_ram;
static PageTable* current_page_table = nullptr;
void SetCurrentPageTable(PageTable* page_table) {
current_page_table = page_table;
if (Core::System::GetInstance().IsPoweredOn()) {
Core::CPU().PageTableChanged();
}
}
PageTable* GetCurrentPageTable() {
return current_page_table;
}
static void MapPages(PageTable& page_table, VAddr base, u64 size, u8* memory, PageType type) {
LOG_DEBUG(HW_Memory, "Mapping %p onto %016" PRIX64 "-%016" PRIX64, memory, base * PAGE_SIZE,
(base + size) * PAGE_SIZE);
VAddr end = base + size;
while (base != end) {
ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at %016" PRIX64, base);
page_table.attributes[base] = type;
page_table.pointers[base] = memory;
base += 1;
if (memory != nullptr)
memory += PAGE_SIZE;
}
}
void MapMemoryRegion(PageTable& page_table, VAddr base, u64 size, u8* target) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %016" PRIX64, size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %016" PRIX64, base);
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory);
}
void MapIoRegion(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer mmio_handler) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %016" PRIX64, size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %016" PRIX64, base);
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special);
auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1);
SpecialRegion region{SpecialRegion::Type::IODevice, mmio_handler};
page_table.special_regions.add(std::make_pair(interval, std::set<SpecialRegion>{region}));
}
void UnmapRegion(PageTable& page_table, VAddr base, u64 size) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %016" PRIX64, size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %016" PRIX64, base);
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped);
auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1);
page_table.special_regions.erase(interval);
}
void AddDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer hook) {
auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1);
SpecialRegion region{SpecialRegion::Type::DebugHook, hook};
page_table.special_regions.add(std::make_pair(interval, std::set<SpecialRegion>{region}));
}
void RemoveDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer hook) {
auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1);
SpecialRegion region{SpecialRegion::Type::DebugHook, hook};
page_table.special_regions.subtract(std::make_pair(interval, std::set<SpecialRegion>{region}));
}
/**
* This function should only be called for virtual addreses with attribute `PageType::Special`.
*/
static std::set<MemoryHookPointer> GetSpecialHandlers(const PageTable& page_table, VAddr vaddr,
u64 size) {
std::set<MemoryHookPointer> result;
auto interval = boost::icl::discrete_interval<VAddr>::closed(vaddr, vaddr + size - 1);
auto interval_list = page_table.special_regions.equal_range(interval);
for (auto it = interval_list.first; it != interval_list.second; ++it) {
for (const auto& region : it->second) {
result.insert(region.handler);
}
}
return result;
}
static std::set<MemoryHookPointer> GetSpecialHandlers(VAddr vaddr, u64 size) {
const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
return GetSpecialHandlers(page_table, vaddr, size);
}
template <typename T>
boost::optional<T> ReadSpecial(VAddr addr);
template <typename T>
T Read(const VAddr vaddr) {
if ((vaddr >> PAGE_BITS) >= PAGE_TABLE_NUM_ENTRIES) {
LOG_ERROR(HW_Memory, "Read%lu after page table @ 0x%016" PRIX64, sizeof(T) * 8, vaddr);
return 0;
}
const PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Read%zu @ 0x%016" PRIX64, sizeof(T) * 8, vaddr);
return 0;
case PageType::Special: {
if (auto result = ReadSpecial<T>(vaddr))
return *result;
[[fallthrough]];
}
case PageType::Memory: {
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
ASSERT_MSG(page_pointer, "Mapped memory page without a pointer @ %016" PRIX64, vaddr);
T value;
std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T));
return value;
}
}
UNREACHABLE();
return 0;
}
template <typename T>
bool WriteSpecial(VAddr addr, const T data);
template <typename T>
void Write(const VAddr vaddr, const T data) {
if ((vaddr >> PAGE_BITS) >= PAGE_TABLE_NUM_ENTRIES) {
LOG_ERROR(HW_Memory, "Write%lu after page table 0x%08X @ 0x%016" PRIX64, sizeof(data) * 8,
(u32)data, vaddr);
return;
}
const PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Write%zu 0x%08X @ 0x%016" PRIX64, sizeof(data) * 8,
static_cast<u32>(data), vaddr);
return;
case PageType::Special: {
if (WriteSpecial<T>(vaddr, data))
return;
[[fallthrough]];
}
case PageType::Memory: {
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
ASSERT_MSG(page_pointer, "Mapped memory page without a pointer @ %016" PRIX64, vaddr);
std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T));
return;
}
}
UNREACHABLE();
}
bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) {
auto& page_table = process.vm_manager.page_table;
if ((vaddr >> PAGE_BITS) >= PAGE_TABLE_NUM_ENTRIES)
return false;
const PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) {
case PageType::Unmapped:
return false;
case PageType::Memory:
return true;
case PageType::Special: {
for (auto handler : GetSpecialHandlers(page_table, vaddr, 1))
if (auto result = handler->IsValidAddress(vaddr))
return *result;
return current_page_table->pointers[vaddr >> PAGE_BITS] != nullptr;
}
}
UNREACHABLE();
return false;
}
bool IsValidVirtualAddress(const VAddr vaddr) {
return IsValidVirtualAddress(*Kernel::g_current_process, vaddr);
}
bool IsValidPhysicalAddress(const PAddr paddr) {
return GetPhysicalPointer(paddr) != nullptr;
}
u8* GetPointer(const VAddr vaddr) {
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
if (page_pointer) {
return page_pointer + (vaddr & PAGE_MASK);
}
LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%016" PRIx64, vaddr);
return nullptr;
}
std::string ReadCString(VAddr vaddr, std::size_t max_length) {
std::string string;
string.reserve(max_length);
for (std::size_t i = 0; i < max_length; ++i) {
char c = Read8(vaddr);
if (c == '\0')
break;
string.push_back(c);
++vaddr;
}
string.shrink_to_fit();
return string;
}
u8* GetPhysicalPointer(PAddr address) {
struct MemoryArea {
PAddr paddr_base;
u32 size;
};
static constexpr MemoryArea memory_areas[] = {
{VRAM_PADDR, VRAM_SIZE},
{IO_AREA_PADDR, IO_AREA_SIZE},
{DSP_RAM_PADDR, DSP_RAM_SIZE},
{FCRAM_PADDR, FCRAM_N3DS_SIZE},
{N3DS_EXTRA_RAM_PADDR, N3DS_EXTRA_RAM_SIZE},
};
const auto area =
std::find_if(std::begin(memory_areas), std::end(memory_areas), [&](const auto& area) {
return address >= area.paddr_base && address < area.paddr_base + area.size;
});
if (area == std::end(memory_areas)) {
LOG_ERROR(HW_Memory, "unknown GetPhysicalPointer @ 0x%016" PRIX64, address);
return nullptr;
}
if (area->paddr_base == IO_AREA_PADDR) {
LOG_ERROR(HW_Memory, "MMIO mappings are not supported yet. phys_addr=0x%016" PRIX64,
address);
return nullptr;
}
u64 offset_into_region = address - area->paddr_base;
u8* target_pointer = nullptr;
switch (area->paddr_base) {
case VRAM_PADDR:
target_pointer = vram.data() + offset_into_region;
break;
case DSP_RAM_PADDR:
break;
case FCRAM_PADDR:
for (const auto& region : Kernel::memory_regions) {
if (offset_into_region >= region.base &&
offset_into_region < region.base + region.size) {
target_pointer =
region.linear_heap_memory->data() + offset_into_region - region.base;
break;
}
}
ASSERT_MSG(target_pointer != nullptr, "Invalid FCRAM address");
break;
case N3DS_EXTRA_RAM_PADDR:
target_pointer = n3ds_extra_ram.data() + offset_into_region;
break;
default:
UNREACHABLE();
}
return target_pointer;
}
u8 Read8(const VAddr addr) {
return Read<u8>(addr);
}
u16 Read16(const VAddr addr) {
return Read<u16_le>(addr);
}
u32 Read32(const VAddr addr) {
return Read<u32_le>(addr);
}
u64 Read64(const VAddr addr) {
return Read<u64_le>(addr);
}
static bool ReadSpecialBlock(const Kernel::Process& process, const VAddr src_addr,
void* dest_buffer, const size_t size) {
auto& page_table = process.vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, src_addr, size)) {
if (handler->ReadBlock(src_addr, dest_buffer, size)) {
return true;
}
}
return false;
}
void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer,
const size_t size) {
auto& page_table = process.vm_manager.page_table;
size_t remaining_size = size;
size_t page_index = src_addr >> PAGE_BITS;
size_t page_offset = src_addr & PAGE_MASK;
while (remaining_size > 0) {
const size_t copy_amount = std::min<size_t>(PAGE_SIZE - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (page_table.attributes[page_index]) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory,
"unmapped ReadBlock @ 0x%016" PRIX64 " (start address = 0x%" PRIx64
", size = %zu)",
current_vaddr, src_addr, size);
std::memset(dest_buffer, 0, copy_amount);
break;
case PageType::Special: {
if (ReadSpecialBlock(process, current_vaddr, dest_buffer, copy_amount))
break;
[[fallthrough]];
}
case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]);
const u8* src_ptr = page_table.pointers[page_index] + page_offset;
std::memcpy(dest_buffer, src_ptr, copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void ReadBlock(const VAddr src_addr, void* dest_buffer, const size_t size) {
ReadBlock(*Kernel::g_current_process, src_addr, dest_buffer, size);
}
void Write8(const VAddr addr, const u8 data) {
Write<u8>(addr, data);
}
void Write16(const VAddr addr, const u16 data) {
Write<u16_le>(addr, data);
}
void Write32(const VAddr addr, const u32 data) {
Write<u32_le>(addr, data);
}
void Write64(const VAddr addr, const u64 data) {
Write<u64_le>(addr, data);
}
static bool WriteSpecialBlock(const Kernel::Process& process, const VAddr dest_addr,
const void* src_buffer, const size_t size) {
auto& page_table = process.vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, dest_addr, size)) {
if (handler->WriteBlock(dest_addr, src_buffer, size)) {
return true;
}
}
return false;
}
void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer,
const size_t size) {
auto& page_table = process.vm_manager.page_table;
size_t remaining_size = size;
size_t page_index = dest_addr >> PAGE_BITS;
size_t page_offset = dest_addr & PAGE_MASK;
while (remaining_size > 0) {
const size_t copy_amount = std::min<size_t>(PAGE_SIZE - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (page_table.attributes[page_index]) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory,
"unmapped WriteBlock @ 0x%016" PRIX64 " (start address = 0x%016" PRIX64
", size = %zu)",
current_vaddr, dest_addr, size);
break;
case PageType::Special:
if (WriteSpecialBlock(process, current_vaddr, src_buffer, copy_amount))
break;
[[fallthrough]];
case PageType::Memory: {
DEBUG_ASSERT(page_table.pointers[page_index]);
u8* dest_ptr = page_table.pointers[page_index] + page_offset;
std::memcpy(dest_ptr, src_buffer, copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
remaining_size -= copy_amount;
}
}
void WriteBlock(const VAddr dest_addr, const void* src_buffer, const size_t size) {
WriteBlock(*Kernel::g_current_process, dest_addr, src_buffer, size);
}
void ZeroBlock(const VAddr dest_addr, const size_t size) {
const auto& process = *Kernel::g_current_process;
size_t remaining_size = size;
size_t page_index = dest_addr >> PAGE_BITS;
size_t page_offset = dest_addr & PAGE_MASK;
static const std::array<u8, PAGE_SIZE> zeros = {};
while (remaining_size > 0) {
const size_t copy_amount = std::min<size_t>(PAGE_SIZE - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (current_page_table->attributes[page_index]) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory,
"unmapped ZeroBlock @ 0x%016" PRIX64 " (start address = 0x%016" PRIX64
", size = %zu)",
current_vaddr, dest_addr, size);
break;
case PageType::Special:
if (WriteSpecialBlock(process, current_vaddr, zeros.data(), copy_amount))
break;
[[fallthrough]];
case PageType::Memory: {
DEBUG_ASSERT(current_page_table->pointers[page_index]);
u8* dest_ptr = current_page_table->pointers[page_index] + page_offset;
std::memset(dest_ptr, 0, copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
remaining_size -= copy_amount;
}
}
void CopyBlock(VAddr dest_addr, VAddr src_addr, const size_t size) {
const auto& process = *Kernel::g_current_process;
size_t remaining_size = size;
size_t page_index = src_addr >> PAGE_BITS;
size_t page_offset = src_addr & PAGE_MASK;
while (remaining_size > 0) {
const size_t copy_amount = std::min<size_t>(PAGE_SIZE - page_offset, remaining_size);
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
switch (current_page_table->attributes[page_index]) {
case PageType::Unmapped:
LOG_ERROR(HW_Memory,
"unmapped CopyBlock @ 0x%016" PRIX64 " (start address = 0x%016" PRIX64
", size = %zu)",
current_vaddr, src_addr, size);
ZeroBlock(dest_addr, copy_amount);
break;
case PageType::Special: {
std::vector<u8> buffer(copy_amount);
if (ReadSpecialBlock(process, current_vaddr, buffer.data(), buffer.size())) {
WriteBlock(dest_addr, buffer.data(), buffer.size());
break;
}
[[fallthrough]];
}
case PageType::Memory: {
DEBUG_ASSERT(current_page_table->pointers[page_index]);
const u8* src_ptr = current_page_table->pointers[page_index] + page_offset;
WriteBlock(dest_addr, src_ptr, copy_amount);
break;
}
default:
UNREACHABLE();
}
page_index++;
page_offset = 0;
dest_addr += static_cast<VAddr>(copy_amount);
src_addr += static_cast<VAddr>(copy_amount);
remaining_size -= copy_amount;
}
}
template <>
boost::optional<u8> ReadSpecial<u8>(VAddr addr) {
const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u8)))
if (auto result = handler->Read8(addr))
return *result;
return {};
}
template <>
boost::optional<u16> ReadSpecial<u16>(VAddr addr) {
const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u16)))
if (auto result = handler->Read16(addr))
return *result;
return {};
}
template <>
boost::optional<u32> ReadSpecial<u32>(VAddr addr) {
const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u32)))
if (auto result = handler->Read32(addr))
return *result;
return {};
}
template <>
boost::optional<u64> ReadSpecial<u64>(VAddr addr) {
const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u64)))
if (auto result = handler->Read64(addr))
return *result;
return {};
}
template <>
bool WriteSpecial<u8>(VAddr addr, const u8 data) {
const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u8)))
if (handler->Write8(addr, data))
return true;
return false;
}
template <>
bool WriteSpecial<u16>(VAddr addr, const u16 data) {
const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u16)))
if (handler->Write16(addr, data))
return true;
return false;
}
template <>
bool WriteSpecial<u32>(VAddr addr, const u32 data) {
const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u32)))
if (handler->Write32(addr, data))
return true;
return false;
}
template <>
bool WriteSpecial<u64>(VAddr addr, const u64 data) {
const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table;
for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u64)))
if (handler->Write64(addr, data))
return true;
return false;
}
boost::optional<PAddr> TryVirtualToPhysicalAddress(const VAddr addr) {
if (addr == 0) {
return 0;
} else if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) {
return addr - VRAM_VADDR + VRAM_PADDR;
} else if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) {
return addr - LINEAR_HEAP_VADDR + FCRAM_PADDR;
} else if (addr >= NEW_LINEAR_HEAP_VADDR && addr < NEW_LINEAR_HEAP_VADDR_END) {
return addr - NEW_LINEAR_HEAP_VADDR + FCRAM_PADDR;
} else if (addr >= DSP_RAM_VADDR && addr < DSP_RAM_VADDR_END) {
return addr - DSP_RAM_VADDR + DSP_RAM_PADDR;
} else if (addr >= IO_AREA_VADDR && addr < IO_AREA_VADDR_END) {
return addr - IO_AREA_VADDR + IO_AREA_PADDR;
} else if (addr >= N3DS_EXTRA_RAM_VADDR && addr < N3DS_EXTRA_RAM_VADDR_END) {
return addr - N3DS_EXTRA_RAM_VADDR + N3DS_EXTRA_RAM_PADDR;
}
return boost::none;
}
PAddr VirtualToPhysicalAddress(const VAddr addr) {
auto paddr = TryVirtualToPhysicalAddress(addr);
if (!paddr) {
LOG_ERROR(HW_Memory, "Unknown virtual address @ 0x%016" PRIX64, addr);
// To help with debugging, set bit on address so that it's obviously invalid.
return addr | 0x80000000;
}
return *paddr;
}
boost::optional<VAddr> PhysicalToVirtualAddress(const PAddr addr) {
if (addr == 0) {
return 0;
} else if (addr >= VRAM_PADDR && addr < VRAM_PADDR_END) {
return addr - VRAM_PADDR + VRAM_VADDR;
} else if (addr >= FCRAM_PADDR && addr < FCRAM_PADDR_END) {
return addr - FCRAM_PADDR + Kernel::g_current_process->GetLinearHeapAreaAddress();
} else if (addr >= DSP_RAM_PADDR && addr < DSP_RAM_PADDR_END) {
return addr - DSP_RAM_PADDR + DSP_RAM_VADDR;
} else if (addr >= IO_AREA_PADDR && addr < IO_AREA_PADDR_END) {
return addr - IO_AREA_PADDR + IO_AREA_VADDR;
} else if (addr >= N3DS_EXTRA_RAM_PADDR && addr < N3DS_EXTRA_RAM_PADDR_END) {
return addr - N3DS_EXTRA_RAM_PADDR + N3DS_EXTRA_RAM_VADDR;
}
return boost::none;
}
} // namespace Memory