Lioncash baed7e1fba kernel/thread: Make all instance variables private
Many of the member variables of the thread class aren't even used
outside of the class itself, so there's no need to make those variables
public. This change follows in the steps of the previous changes that
made other kernel types' members private.

The main motivation behind this is that the Thread class will likely
change in the future as emulation becomes more accurate, and letting
random bits of the emulator access data members of the Thread class
directly makes it a pain to shuffle around and/or modify internals.
Having all data members public like this also makes it difficult to
reason about certain bits of behavior without first verifying what parts
of the core actually use them.

Everything being public also generally follows the tendency for changes
to be introduced in completely different translation units that would
otherwise be better introduced as an addition to the Thread class'
public interface.
2018-10-04 00:14:15 -04:00

430 lines
15 KiB
C++

// Copyright 2014 Citra Emulator Project / PPSSPP Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <cinttypes>
#include <vector>
#include <boost/optional.hpp>
#include <boost/range/algorithm_ext/erase.hpp>
#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/math_util.h"
#include "common/thread_queue_list.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/result.h"
#include "core/memory.h"
namespace Kernel {
bool Thread::ShouldWait(Thread* thread) const {
return status != ThreadStatus::Dead;
}
void Thread::Acquire(Thread* thread) {
ASSERT_MSG(!ShouldWait(thread), "object unavailable!");
}
Thread::Thread(KernelCore& kernel) : WaitObject{kernel} {}
Thread::~Thread() = default;
void Thread::Stop() {
// Cancel any outstanding wakeup events for this thread
CoreTiming::UnscheduleEvent(kernel.ThreadWakeupCallbackEventType(), callback_handle);
kernel.ThreadWakeupCallbackHandleTable().Close(callback_handle);
callback_handle = 0;
// Clean up thread from ready queue
// This is only needed when the thread is terminated forcefully (SVC TerminateProcess)
if (status == ThreadStatus::Ready) {
scheduler->UnscheduleThread(this, current_priority);
}
status = ThreadStatus::Dead;
WakeupAllWaitingThreads();
// Clean up any dangling references in objects that this thread was waiting for
for (auto& wait_object : wait_objects) {
wait_object->RemoveWaitingThread(this);
}
wait_objects.clear();
// Mark the TLS slot in the thread's page as free.
owner_process->FreeTLSSlot(tls_address);
}
void WaitCurrentThread_Sleep() {
Thread* thread = GetCurrentThread();
thread->SetStatus(ThreadStatus::WaitSleep);
}
void ExitCurrentThread() {
Thread* thread = GetCurrentThread();
thread->Stop();
Core::System::GetInstance().CurrentScheduler().RemoveThread(thread);
}
void Thread::WakeAfterDelay(s64 nanoseconds) {
// Don't schedule a wakeup if the thread wants to wait forever
if (nanoseconds == -1)
return;
// This function might be called from any thread so we have to be cautious and use the
// thread-safe version of ScheduleEvent.
CoreTiming::ScheduleEventThreadsafe(CoreTiming::nsToCycles(nanoseconds),
kernel.ThreadWakeupCallbackEventType(), callback_handle);
}
void Thread::CancelWakeupTimer() {
CoreTiming::UnscheduleEventThreadsafe(kernel.ThreadWakeupCallbackEventType(), callback_handle);
}
static boost::optional<s32> GetNextProcessorId(u64 mask) {
for (s32 index = 0; index < Core::NUM_CPU_CORES; ++index) {
if (mask & (1ULL << index)) {
if (!Core::System::GetInstance().Scheduler(index)->GetCurrentThread()) {
// Core is enabled and not running any threads, use this one
return index;
}
}
}
return {};
}
void Thread::ResumeFromWait() {
ASSERT_MSG(wait_objects.empty(), "Thread is waking up while waiting for objects");
switch (status) {
case ThreadStatus::WaitSynchAll:
case ThreadStatus::WaitSynchAny:
case ThreadStatus::WaitHLEEvent:
case ThreadStatus::WaitSleep:
case ThreadStatus::WaitIPC:
case ThreadStatus::WaitMutex:
case ThreadStatus::WaitArb:
break;
case ThreadStatus::Ready:
// The thread's wakeup callback must have already been cleared when the thread was first
// awoken.
ASSERT(wakeup_callback == nullptr);
// If the thread is waiting on multiple wait objects, it might be awoken more than once
// before actually resuming. We can ignore subsequent wakeups if the thread status has
// already been set to ThreadStatus::Ready.
return;
case ThreadStatus::Running:
DEBUG_ASSERT_MSG(false, "Thread with object id {} has already resumed.", GetObjectId());
return;
case ThreadStatus::Dead:
// This should never happen, as threads must complete before being stopped.
DEBUG_ASSERT_MSG(false, "Thread with object id {} cannot be resumed because it's DEAD.",
GetObjectId());
return;
}
wakeup_callback = nullptr;
status = ThreadStatus::Ready;
boost::optional<s32> new_processor_id = GetNextProcessorId(affinity_mask);
if (!new_processor_id) {
new_processor_id = processor_id;
}
if (ideal_core != -1 &&
Core::System::GetInstance().Scheduler(ideal_core)->GetCurrentThread() == nullptr) {
new_processor_id = ideal_core;
}
ASSERT(*new_processor_id < 4);
// Add thread to new core's scheduler
auto& next_scheduler = Core::System::GetInstance().Scheduler(*new_processor_id);
if (*new_processor_id != processor_id) {
// Remove thread from previous core's scheduler
scheduler->RemoveThread(this);
next_scheduler->AddThread(this, current_priority);
}
processor_id = *new_processor_id;
// If the thread was ready, unschedule from the previous core and schedule on the new core
scheduler->UnscheduleThread(this, current_priority);
next_scheduler->ScheduleThread(this, current_priority);
// Change thread's scheduler
scheduler = next_scheduler;
Core::System::GetInstance().CpuCore(processor_id).PrepareReschedule();
}
/**
* Resets a thread context, making it ready to be scheduled and run by the CPU
* @param context Thread context to reset
* @param stack_top Address of the top of the stack
* @param entry_point Address of entry point for execution
* @param arg User argument for thread
*/
static void ResetThreadContext(Core::ARM_Interface::ThreadContext& context, VAddr stack_top,
VAddr entry_point, u64 arg) {
memset(&context, 0, sizeof(Core::ARM_Interface::ThreadContext));
context.cpu_registers[0] = arg;
context.pc = entry_point;
context.sp = stack_top;
context.pstate = 0;
context.fpcr = 0;
}
ResultVal<SharedPtr<Thread>> Thread::Create(KernelCore& kernel, std::string name, VAddr entry_point,
u32 priority, u64 arg, s32 processor_id,
VAddr stack_top, SharedPtr<Process> owner_process) {
// Check if priority is in ranged. Lowest priority -> highest priority id.
if (priority > THREADPRIO_LOWEST) {
LOG_ERROR(Kernel_SVC, "Invalid thread priority: {}", priority);
return ERR_INVALID_THREAD_PRIORITY;
}
if (processor_id > THREADPROCESSORID_MAX) {
LOG_ERROR(Kernel_SVC, "Invalid processor id: {}", processor_id);
return ERR_INVALID_PROCESSOR_ID;
}
// TODO(yuriks): Other checks, returning 0xD9001BEA
if (!Memory::IsValidVirtualAddress(*owner_process, entry_point)) {
LOG_ERROR(Kernel_SVC, "(name={}): invalid entry {:016X}", name, entry_point);
// TODO (bunnei): Find the correct error code to use here
return ResultCode(-1);
}
SharedPtr<Thread> thread(new Thread(kernel));
thread->thread_id = kernel.CreateNewThreadID();
thread->status = ThreadStatus::Dormant;
thread->entry_point = entry_point;
thread->stack_top = stack_top;
thread->tpidr_el0 = 0;
thread->nominal_priority = thread->current_priority = priority;
thread->last_running_ticks = CoreTiming::GetTicks();
thread->processor_id = processor_id;
thread->ideal_core = processor_id;
thread->affinity_mask = 1ULL << processor_id;
thread->wait_objects.clear();
thread->mutex_wait_address = 0;
thread->condvar_wait_address = 0;
thread->wait_handle = 0;
thread->name = std::move(name);
thread->callback_handle = kernel.ThreadWakeupCallbackHandleTable().Create(thread).Unwrap();
thread->owner_process = owner_process;
thread->scheduler = Core::System::GetInstance().Scheduler(processor_id);
thread->scheduler->AddThread(thread, priority);
thread->tls_address = thread->owner_process->MarkNextAvailableTLSSlotAsUsed(*thread);
// TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used
// to initialize the context
ResetThreadContext(thread->context, stack_top, entry_point, arg);
return MakeResult<SharedPtr<Thread>>(std::move(thread));
}
void Thread::SetPriority(u32 priority) {
ASSERT_MSG(priority <= THREADPRIO_LOWEST && priority >= THREADPRIO_HIGHEST,
"Invalid priority value.");
nominal_priority = priority;
UpdatePriority();
}
void Thread::BoostPriority(u32 priority) {
scheduler->SetThreadPriority(this, priority);
current_priority = priority;
}
SharedPtr<Thread> SetupMainThread(KernelCore& kernel, VAddr entry_point, u32 priority,
Process& owner_process) {
// Setup page table so we can write to memory
SetCurrentPageTable(&owner_process.VMManager().page_table);
// Initialize new "main" thread
const VAddr stack_top = owner_process.VMManager().GetTLSIORegionEndAddress();
auto thread_res = Thread::Create(kernel, "main", entry_point, priority, 0, THREADPROCESSORID_0,
stack_top, &owner_process);
SharedPtr<Thread> thread = std::move(thread_res).Unwrap();
// Register 1 must be a handle to the main thread
const Handle guest_handle = kernel.HandleTable().Create(thread).Unwrap();
thread->SetGuestHandle(guest_handle);
thread->GetContext().cpu_registers[1] = guest_handle;
// Threads by default are dormant, wake up the main thread so it runs when the scheduler fires
thread->ResumeFromWait();
return thread;
}
void Thread::SetWaitSynchronizationResult(ResultCode result) {
context.cpu_registers[0] = result.raw;
}
void Thread::SetWaitSynchronizationOutput(s32 output) {
context.cpu_registers[1] = output;
}
s32 Thread::GetWaitObjectIndex(WaitObject* object) const {
ASSERT_MSG(!wait_objects.empty(), "Thread is not waiting for anything");
auto match = std::find(wait_objects.rbegin(), wait_objects.rend(), object);
return static_cast<s32>(std::distance(match, wait_objects.rend()) - 1);
}
VAddr Thread::GetCommandBufferAddress() const {
// Offset from the start of TLS at which the IPC command buffer begins.
static constexpr int CommandHeaderOffset = 0x80;
return GetTLSAddress() + CommandHeaderOffset;
}
void Thread::SetStatus(ThreadStatus new_status) {
if (new_status == status) {
return;
}
if (status == ThreadStatus::Running) {
last_running_ticks = CoreTiming::GetTicks();
}
status = new_status;
}
void Thread::AddMutexWaiter(SharedPtr<Thread> thread) {
if (thread->lock_owner == this) {
// If the thread is already waiting for this thread to release the mutex, ensure that the
// waiters list is consistent and return without doing anything.
auto itr = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
ASSERT(itr != wait_mutex_threads.end());
return;
}
// A thread can't wait on two different mutexes at the same time.
ASSERT(thread->lock_owner == nullptr);
// Ensure that the thread is not already in the list of mutex waiters
auto itr = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
ASSERT(itr == wait_mutex_threads.end());
thread->lock_owner = this;
wait_mutex_threads.emplace_back(std::move(thread));
UpdatePriority();
}
void Thread::RemoveMutexWaiter(SharedPtr<Thread> thread) {
ASSERT(thread->lock_owner == this);
// Ensure that the thread is in the list of mutex waiters
auto itr = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
ASSERT(itr != wait_mutex_threads.end());
boost::remove_erase(wait_mutex_threads, thread);
thread->lock_owner = nullptr;
UpdatePriority();
}
void Thread::UpdatePriority() {
// Find the highest priority among all the threads that are waiting for this thread's lock
u32 new_priority = nominal_priority;
for (const auto& thread : wait_mutex_threads) {
if (thread->nominal_priority < new_priority)
new_priority = thread->nominal_priority;
}
if (new_priority == current_priority)
return;
scheduler->SetThreadPriority(this, new_priority);
current_priority = new_priority;
// Recursively update the priority of the thread that depends on the priority of this one.
if (lock_owner)
lock_owner->UpdatePriority();
}
void Thread::ChangeCore(u32 core, u64 mask) {
ideal_core = core;
affinity_mask = mask;
if (status != ThreadStatus::Ready) {
return;
}
boost::optional<s32> new_processor_id{GetNextProcessorId(affinity_mask)};
if (!new_processor_id) {
new_processor_id = processor_id;
}
if (ideal_core != -1 &&
Core::System::GetInstance().Scheduler(ideal_core)->GetCurrentThread() == nullptr) {
new_processor_id = ideal_core;
}
ASSERT(*new_processor_id < 4);
// Add thread to new core's scheduler
auto& next_scheduler = Core::System::GetInstance().Scheduler(*new_processor_id);
if (*new_processor_id != processor_id) {
// Remove thread from previous core's scheduler
scheduler->RemoveThread(this);
next_scheduler->AddThread(this, current_priority);
}
processor_id = *new_processor_id;
// If the thread was ready, unschedule from the previous core and schedule on the new core
scheduler->UnscheduleThread(this, current_priority);
next_scheduler->ScheduleThread(this, current_priority);
// Change thread's scheduler
scheduler = next_scheduler;
Core::System::GetInstance().CpuCore(processor_id).PrepareReschedule();
}
bool Thread::AllWaitObjectsReady() {
return std::none_of(
wait_objects.begin(), wait_objects.end(),
[this](const SharedPtr<WaitObject>& object) { return object->ShouldWait(this); });
}
bool Thread::InvokeWakeupCallback(ThreadWakeupReason reason, SharedPtr<Thread> thread,
SharedPtr<WaitObject> object, std::size_t index) {
ASSERT(wakeup_callback);
return wakeup_callback(reason, std::move(thread), std::move(object), index);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Gets the current thread
*/
Thread* GetCurrentThread() {
return Core::System::GetInstance().CurrentScheduler().GetCurrentThread();
}
} // namespace Kernel