mirror of
https://github.com/yuzu-emu/yuzu-android
synced 2025-01-02 09:11:22 -08:00
f00641459e
There were two issues with block linear copies. First the swizzling was wrong and this commit reimplements them. The other issue was that these copies are generally used to download render targets from the GPU and yuzu was not downloading them from host GPU memory unless the extreme GPU accuracy setting was selected. This commit enables cached memory reads for all accuracy levels. - Fixes level thumbnails in Super Mario Maker 2.
337 lines
16 KiB
C++
337 lines
16 KiB
C++
// Copyright 2018 yuzu Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include "common/alignment.h"
|
|
#include "common/assert.h"
|
|
#include "common/bit_util.h"
|
|
#include "video_core/gpu.h"
|
|
#include "video_core/textures/decoders.h"
|
|
#include "video_core/textures/texture.h"
|
|
|
|
namespace Tegra::Texture {
|
|
namespace {
|
|
|
|
/**
|
|
* This table represents the internal swizzle of a gob,
|
|
* in format 16 bytes x 2 sector packing.
|
|
* Calculates the offset of an (x, y) position within a swizzled texture.
|
|
* Taken from the Tegra X1 Technical Reference Manual. pages 1187-1188
|
|
*/
|
|
template <std::size_t N, std::size_t M, u32 Align>
|
|
struct alignas(64) SwizzleTable {
|
|
static_assert(M * Align == 64, "Swizzle Table does not align to GOB");
|
|
constexpr SwizzleTable() {
|
|
for (u32 y = 0; y < N; ++y) {
|
|
for (u32 x = 0; x < M; ++x) {
|
|
const u32 x2 = x * Align;
|
|
values[y][x] = static_cast<u16>(((x2 % 64) / 32) * 256 + ((y % 8) / 2) * 64 +
|
|
((x2 % 32) / 16) * 32 + (y % 2) * 16 + (x2 % 16));
|
|
}
|
|
}
|
|
}
|
|
const std::array<u16, M>& operator[](std::size_t index) const {
|
|
return values[index];
|
|
}
|
|
std::array<std::array<u16, M>, N> values{};
|
|
};
|
|
|
|
constexpr u32 FAST_SWIZZLE_ALIGN = 16;
|
|
|
|
constexpr auto LEGACY_SWIZZLE_TABLE = SwizzleTable<GOB_SIZE_X, GOB_SIZE_X, GOB_SIZE_Z>();
|
|
constexpr auto FAST_SWIZZLE_TABLE = SwizzleTable<GOB_SIZE_Y, 4, FAST_SWIZZLE_ALIGN>();
|
|
|
|
/**
|
|
* This function manages ALL the GOBs(Group of Bytes) Inside a single block.
|
|
* Instead of going gob by gob, we map the coordinates inside a block and manage from
|
|
* those. Block_Width is assumed to be 1.
|
|
*/
|
|
void PreciseProcessBlock(u8* const swizzled_data, u8* const unswizzled_data, const bool unswizzle,
|
|
const u32 x_start, const u32 y_start, const u32 z_start, const u32 x_end,
|
|
const u32 y_end, const u32 z_end, const u32 tile_offset,
|
|
const u32 xy_block_size, const u32 layer_z, const u32 stride_x,
|
|
const u32 bytes_per_pixel, const u32 out_bytes_per_pixel) {
|
|
std::array<u8*, 2> data_ptrs;
|
|
u32 z_address = tile_offset;
|
|
|
|
for (u32 z = z_start; z < z_end; z++) {
|
|
u32 y_address = z_address;
|
|
u32 pixel_base = layer_z * z + y_start * stride_x;
|
|
for (u32 y = y_start; y < y_end; y++) {
|
|
const auto& table = LEGACY_SWIZZLE_TABLE[y % GOB_SIZE_Y];
|
|
for (u32 x = x_start; x < x_end; x++) {
|
|
const u32 swizzle_offset{y_address + table[x * bytes_per_pixel % GOB_SIZE_X]};
|
|
const u32 pixel_index{x * out_bytes_per_pixel + pixel_base};
|
|
data_ptrs[unswizzle] = swizzled_data + swizzle_offset;
|
|
data_ptrs[!unswizzle] = unswizzled_data + pixel_index;
|
|
std::memcpy(data_ptrs[0], data_ptrs[1], bytes_per_pixel);
|
|
}
|
|
pixel_base += stride_x;
|
|
if ((y + 1) % GOB_SIZE_Y == 0)
|
|
y_address += GOB_SIZE;
|
|
}
|
|
z_address += xy_block_size;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function manages ALL the GOBs(Group of Bytes) Inside a single block.
|
|
* Instead of going gob by gob, we map the coordinates inside a block and manage from
|
|
* those. Block_Width is assumed to be 1.
|
|
*/
|
|
void FastProcessBlock(u8* const swizzled_data, u8* const unswizzled_data, const bool unswizzle,
|
|
const u32 x_start, const u32 y_start, const u32 z_start, const u32 x_end,
|
|
const u32 y_end, const u32 z_end, const u32 tile_offset,
|
|
const u32 xy_block_size, const u32 layer_z, const u32 stride_x,
|
|
const u32 bytes_per_pixel, const u32 out_bytes_per_pixel) {
|
|
std::array<u8*, 2> data_ptrs;
|
|
u32 z_address = tile_offset;
|
|
const u32 x_startb = x_start * bytes_per_pixel;
|
|
const u32 x_endb = x_end * bytes_per_pixel;
|
|
|
|
for (u32 z = z_start; z < z_end; z++) {
|
|
u32 y_address = z_address;
|
|
u32 pixel_base = layer_z * z + y_start * stride_x;
|
|
for (u32 y = y_start; y < y_end; y++) {
|
|
const auto& table = FAST_SWIZZLE_TABLE[y % GOB_SIZE_Y];
|
|
for (u32 xb = x_startb; xb < x_endb; xb += FAST_SWIZZLE_ALIGN) {
|
|
const u32 swizzle_offset{y_address + table[(xb / FAST_SWIZZLE_ALIGN) % 4]};
|
|
const u32 out_x = xb * out_bytes_per_pixel / bytes_per_pixel;
|
|
const u32 pixel_index{out_x + pixel_base};
|
|
data_ptrs[unswizzle ? 1 : 0] = swizzled_data + swizzle_offset;
|
|
data_ptrs[unswizzle ? 0 : 1] = unswizzled_data + pixel_index;
|
|
std::memcpy(data_ptrs[0], data_ptrs[1], FAST_SWIZZLE_ALIGN);
|
|
}
|
|
pixel_base += stride_x;
|
|
if ((y + 1) % GOB_SIZE_Y == 0)
|
|
y_address += GOB_SIZE;
|
|
}
|
|
z_address += xy_block_size;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* This function unswizzles or swizzles a texture by mapping Linear to BlockLinear Textue.
|
|
* The body of this function takes care of splitting the swizzled texture into blocks,
|
|
* and managing the extents of it. Once all the parameters of a single block are obtained,
|
|
* the function calls 'ProcessBlock' to process that particular Block.
|
|
*
|
|
* Documentation for the memory layout and decoding can be found at:
|
|
* https://envytools.readthedocs.io/en/latest/hw/memory/g80-surface.html#blocklinear-surfaces
|
|
*/
|
|
template <bool fast>
|
|
void SwizzledData(u8* const swizzled_data, u8* const unswizzled_data, const bool unswizzle,
|
|
const u32 width, const u32 height, const u32 depth, const u32 bytes_per_pixel,
|
|
const u32 out_bytes_per_pixel, const u32 block_height, const u32 block_depth,
|
|
const u32 width_spacing) {
|
|
auto div_ceil = [](const u32 x, const u32 y) { return ((x + y - 1) / y); };
|
|
const u32 stride_x = width * out_bytes_per_pixel;
|
|
const u32 layer_z = height * stride_x;
|
|
const u32 gob_elements_x = GOB_SIZE_X / bytes_per_pixel;
|
|
constexpr u32 gob_elements_y = GOB_SIZE_Y;
|
|
constexpr u32 gob_elements_z = GOB_SIZE_Z;
|
|
const u32 block_x_elements = gob_elements_x;
|
|
const u32 block_y_elements = gob_elements_y * block_height;
|
|
const u32 block_z_elements = gob_elements_z * block_depth;
|
|
const u32 aligned_width = Common::AlignUp(width, gob_elements_x * width_spacing);
|
|
const u32 blocks_on_x = div_ceil(aligned_width, block_x_elements);
|
|
const u32 blocks_on_y = div_ceil(height, block_y_elements);
|
|
const u32 blocks_on_z = div_ceil(depth, block_z_elements);
|
|
const u32 xy_block_size = GOB_SIZE * block_height;
|
|
const u32 block_size = xy_block_size * block_depth;
|
|
u32 tile_offset = 0;
|
|
for (u32 zb = 0; zb < blocks_on_z; zb++) {
|
|
const u32 z_start = zb * block_z_elements;
|
|
const u32 z_end = std::min(depth, z_start + block_z_elements);
|
|
for (u32 yb = 0; yb < blocks_on_y; yb++) {
|
|
const u32 y_start = yb * block_y_elements;
|
|
const u32 y_end = std::min(height, y_start + block_y_elements);
|
|
for (u32 xb = 0; xb < blocks_on_x; xb++) {
|
|
const u32 x_start = xb * block_x_elements;
|
|
const u32 x_end = std::min(width, x_start + block_x_elements);
|
|
if constexpr (fast) {
|
|
FastProcessBlock(swizzled_data, unswizzled_data, unswizzle, x_start, y_start,
|
|
z_start, x_end, y_end, z_end, tile_offset, xy_block_size,
|
|
layer_z, stride_x, bytes_per_pixel, out_bytes_per_pixel);
|
|
} else {
|
|
PreciseProcessBlock(swizzled_data, unswizzled_data, unswizzle, x_start, y_start,
|
|
z_start, x_end, y_end, z_end, tile_offset, xy_block_size,
|
|
layer_z, stride_x, bytes_per_pixel, out_bytes_per_pixel);
|
|
}
|
|
tile_offset += block_size;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // Anonymous namespace
|
|
|
|
void CopySwizzledData(u32 width, u32 height, u32 depth, u32 bytes_per_pixel,
|
|
u32 out_bytes_per_pixel, u8* const swizzled_data, u8* const unswizzled_data,
|
|
bool unswizzle, u32 block_height, u32 block_depth, u32 width_spacing) {
|
|
const u32 block_height_size{1U << block_height};
|
|
const u32 block_depth_size{1U << block_depth};
|
|
if (bytes_per_pixel % 3 != 0 && (width * bytes_per_pixel) % FAST_SWIZZLE_ALIGN == 0) {
|
|
SwizzledData<true>(swizzled_data, unswizzled_data, unswizzle, width, height, depth,
|
|
bytes_per_pixel, out_bytes_per_pixel, block_height_size,
|
|
block_depth_size, width_spacing);
|
|
} else {
|
|
SwizzledData<false>(swizzled_data, unswizzled_data, unswizzle, width, height, depth,
|
|
bytes_per_pixel, out_bytes_per_pixel, block_height_size,
|
|
block_depth_size, width_spacing);
|
|
}
|
|
}
|
|
|
|
void UnswizzleTexture(u8* const unswizzled_data, u8* address, u32 tile_size_x, u32 tile_size_y,
|
|
u32 bytes_per_pixel, u32 width, u32 height, u32 depth, u32 block_height,
|
|
u32 block_depth, u32 width_spacing) {
|
|
CopySwizzledData((width + tile_size_x - 1) / tile_size_x,
|
|
(height + tile_size_y - 1) / tile_size_y, depth, bytes_per_pixel,
|
|
bytes_per_pixel, address, unswizzled_data, true, block_height, block_depth,
|
|
width_spacing);
|
|
}
|
|
|
|
std::vector<u8> UnswizzleTexture(u8* address, u32 tile_size_x, u32 tile_size_y, u32 bytes_per_pixel,
|
|
u32 width, u32 height, u32 depth, u32 block_height,
|
|
u32 block_depth, u32 width_spacing) {
|
|
std::vector<u8> unswizzled_data(width * height * depth * bytes_per_pixel);
|
|
UnswizzleTexture(unswizzled_data.data(), address, tile_size_x, tile_size_y, bytes_per_pixel,
|
|
width, height, depth, block_height, block_depth, width_spacing);
|
|
return unswizzled_data;
|
|
}
|
|
|
|
void SwizzleSubrect(u32 subrect_width, u32 subrect_height, u32 source_pitch, u32 swizzled_width,
|
|
u32 bytes_per_pixel, u8* swizzled_data, const u8* unswizzled_data,
|
|
u32 block_height_bit, u32 offset_x, u32 offset_y) {
|
|
const u32 block_height = 1U << block_height_bit;
|
|
const u32 image_width_in_gobs =
|
|
(swizzled_width * bytes_per_pixel + (GOB_SIZE_X - 1)) / GOB_SIZE_X;
|
|
for (u32 line = 0; line < subrect_height; ++line) {
|
|
const u32 dst_y = line + offset_y;
|
|
const u32 gob_address_y =
|
|
(dst_y / (GOB_SIZE_Y * block_height)) * GOB_SIZE * block_height * image_width_in_gobs +
|
|
((dst_y % (GOB_SIZE_Y * block_height)) / GOB_SIZE_Y) * GOB_SIZE;
|
|
const auto& table = LEGACY_SWIZZLE_TABLE[dst_y % GOB_SIZE_Y];
|
|
for (u32 x = 0; x < subrect_width; ++x) {
|
|
const u32 dst_x = x + offset_x;
|
|
const u32 gob_address =
|
|
gob_address_y + (dst_x * bytes_per_pixel / GOB_SIZE_X) * GOB_SIZE * block_height;
|
|
const u32 swizzled_offset = gob_address + table[(dst_x * bytes_per_pixel) % GOB_SIZE_X];
|
|
const u32 unswizzled_offset = line * source_pitch + x * bytes_per_pixel;
|
|
|
|
const u8* const source_line = unswizzled_data + unswizzled_offset;
|
|
u8* const dest_addr = swizzled_data + swizzled_offset;
|
|
std::memcpy(dest_addr, source_line, bytes_per_pixel);
|
|
}
|
|
}
|
|
}
|
|
|
|
void UnswizzleSubrect(u32 line_length_in, u32 line_count, u32 pitch, u32 width, u32 bytes_per_pixel,
|
|
u32 block_height, u32 origin_x, u32 origin_y, u8* output, const u8* input) {
|
|
const u32 stride = width * bytes_per_pixel;
|
|
const u32 gobs_in_x = (stride + GOB_SIZE_X - 1) / GOB_SIZE_X;
|
|
const u32 block_size = gobs_in_x << (GOB_SIZE_SHIFT + block_height);
|
|
|
|
const u32 block_height_mask = (1U << block_height) - 1;
|
|
const u32 x_shift = static_cast<u32>(GOB_SIZE_SHIFT) + block_height;
|
|
|
|
for (u32 line = 0; line < line_count; ++line) {
|
|
const u32 src_y = line + origin_y;
|
|
const auto& table = LEGACY_SWIZZLE_TABLE[src_y % GOB_SIZE_Y];
|
|
|
|
const u32 block_y = src_y >> GOB_SIZE_Y_SHIFT;
|
|
const u32 src_offset_y = (block_y >> block_height) * block_size +
|
|
((block_y & block_height_mask) << GOB_SIZE_SHIFT);
|
|
for (u32 column = 0; column < line_length_in; ++column) {
|
|
const u32 src_x = (column + origin_x) * bytes_per_pixel;
|
|
const u32 src_offset_x = (src_x >> GOB_SIZE_X_SHIFT) << x_shift;
|
|
|
|
const u32 swizzled_offset = src_offset_y + src_offset_x + table[src_x % GOB_SIZE_X];
|
|
const u32 unswizzled_offset = line * pitch + column * bytes_per_pixel;
|
|
|
|
std::memcpy(output + unswizzled_offset, input + swizzled_offset, bytes_per_pixel);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SwizzleSliceToVoxel(u32 line_length_in, u32 line_count, u32 pitch, u32 width, u32 height,
|
|
u32 bytes_per_pixel, u32 block_height, u32 block_depth, u32 origin_x,
|
|
u32 origin_y, u8* output, const u8* input) {
|
|
UNIMPLEMENTED_IF(origin_x > 0);
|
|
UNIMPLEMENTED_IF(origin_y > 0);
|
|
|
|
const u32 stride = width * bytes_per_pixel;
|
|
const u32 gobs_in_x = (stride + GOB_SIZE_X - 1) / GOB_SIZE_X;
|
|
const u32 block_size = gobs_in_x << (GOB_SIZE_SHIFT + block_height + block_depth);
|
|
|
|
const u32 block_height_mask = (1U << block_height) - 1;
|
|
const u32 x_shift = static_cast<u32>(GOB_SIZE_SHIFT) + block_height + block_depth;
|
|
|
|
for (u32 line = 0; line < line_count; ++line) {
|
|
const auto& table = LEGACY_SWIZZLE_TABLE[line % GOB_SIZE_Y];
|
|
const u32 block_y = line / GOB_SIZE_Y;
|
|
const u32 dst_offset_y =
|
|
(block_y >> block_height) * block_size + (block_y & block_height_mask) * GOB_SIZE;
|
|
for (u32 x = 0; x < line_length_in; ++x) {
|
|
const u32 dst_offset =
|
|
((x / GOB_SIZE_X) << x_shift) + dst_offset_y + table[x % GOB_SIZE_X];
|
|
const u32 src_offset = x * bytes_per_pixel + line * pitch;
|
|
std::memcpy(output + dst_offset, input + src_offset, bytes_per_pixel);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SwizzleKepler(const u32 width, const u32 height, const u32 dst_x, const u32 dst_y,
|
|
const u32 block_height_bit, const std::size_t copy_size, const u8* source_data,
|
|
u8* swizzle_data) {
|
|
const u32 block_height = 1U << block_height_bit;
|
|
const u32 image_width_in_gobs{(width + GOB_SIZE_X - 1) / GOB_SIZE_X};
|
|
std::size_t count = 0;
|
|
for (std::size_t y = dst_y; y < height && count < copy_size; ++y) {
|
|
const std::size_t gob_address_y =
|
|
(y / (GOB_SIZE_Y * block_height)) * GOB_SIZE * block_height * image_width_in_gobs +
|
|
((y % (GOB_SIZE_Y * block_height)) / GOB_SIZE_Y) * GOB_SIZE;
|
|
const auto& table = LEGACY_SWIZZLE_TABLE[y % GOB_SIZE_Y];
|
|
for (std::size_t x = dst_x; x < width && count < copy_size; ++x) {
|
|
const std::size_t gob_address =
|
|
gob_address_y + (x / GOB_SIZE_X) * GOB_SIZE * block_height;
|
|
const std::size_t swizzled_offset = gob_address + table[x % GOB_SIZE_X];
|
|
const u8* source_line = source_data + count;
|
|
u8* dest_addr = swizzle_data + swizzled_offset;
|
|
count++;
|
|
|
|
std::memcpy(dest_addr, source_line, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::size_t CalculateSize(bool tiled, u32 bytes_per_pixel, u32 width, u32 height, u32 depth,
|
|
u32 block_height, u32 block_depth) {
|
|
if (tiled) {
|
|
const u32 aligned_width = Common::AlignBits(width * bytes_per_pixel, GOB_SIZE_X_SHIFT);
|
|
const u32 aligned_height = Common::AlignBits(height, GOB_SIZE_Y_SHIFT + block_height);
|
|
const u32 aligned_depth = Common::AlignBits(depth, GOB_SIZE_Z_SHIFT + block_depth);
|
|
return aligned_width * aligned_height * aligned_depth;
|
|
} else {
|
|
return width * height * depth * bytes_per_pixel;
|
|
}
|
|
}
|
|
|
|
u64 GetGOBOffset(u32 width, u32 height, u32 dst_x, u32 dst_y, u32 block_height,
|
|
u32 bytes_per_pixel) {
|
|
auto div_ceil = [](const u32 x, const u32 y) { return ((x + y - 1) / y); };
|
|
const u32 gobs_in_block = 1 << block_height;
|
|
const u32 y_blocks = GOB_SIZE_Y << block_height;
|
|
const u32 x_per_gob = GOB_SIZE_X / bytes_per_pixel;
|
|
const u32 x_blocks = div_ceil(width, x_per_gob);
|
|
const u32 block_size = GOB_SIZE * gobs_in_block;
|
|
const u32 stride = block_size * x_blocks;
|
|
const u32 base = (dst_y / y_blocks) * stride + (dst_x / x_per_gob) * block_size;
|
|
const u32 relative_y = dst_y % y_blocks;
|
|
return base + (relative_y / GOB_SIZE_Y) * GOB_SIZE;
|
|
}
|
|
|
|
} // namespace Tegra::Texture
|