mirror of
https://github.com/Ryujinx/Ryujinx.git
synced 2024-12-23 05:41:22 -08:00
Implement and use an Interval Tree for the MultiRangeList (#2641)
* Implement and use an Interval Tree for the MultiRangeList * Feedback * Address Feedback * Missed this somehow
This commit is contained in:
parent
f08a280ade
commit
db97b1d7d2
815
Ryujinx.Common/Collections/IntervalTree.cs
Normal file
815
Ryujinx.Common/Collections/IntervalTree.cs
Normal file
@ -0,0 +1,815 @@
|
||||
using System;
|
||||
using System.Collections;
|
||||
using System.Collections.Generic;
|
||||
using System.Diagnostics.CodeAnalysis;
|
||||
using System.Linq;
|
||||
|
||||
namespace Ryujinx.Common.Collections
|
||||
{
|
||||
/// <summary>
|
||||
/// An Augmented Interval Tree based off of the "TreeDictionary"'s Red-Black Tree. Allows fast overlap checking of ranges.
|
||||
/// </summary>
|
||||
/// <typeparam name="K">Key</typeparam>
|
||||
/// <typeparam name="V">Value</typeparam>
|
||||
public class IntervalTree<K, V> where K : IComparable<K>
|
||||
{
|
||||
private const int ArrayGrowthSize = 32;
|
||||
|
||||
private const bool Black = true;
|
||||
private const bool Red = false;
|
||||
private IntervalTreeNode<K, V> _root = null;
|
||||
private int _count = 0;
|
||||
|
||||
public int Count => _count;
|
||||
|
||||
public IntervalTree() { }
|
||||
|
||||
#region Public Methods
|
||||
|
||||
/// <summary>
|
||||
/// Gets the values of the interval whose key is <paramref name="key"/>.
|
||||
/// </summary>
|
||||
/// <param name="key">Key of the node value to get</param>
|
||||
/// <param name="overlaps">Overlaps array to place results in</param>
|
||||
/// <returns>Number of values found</returns>
|
||||
/// <exception cref="ArgumentNullException"><paramref name="key"/> is null</exception>
|
||||
public int Get(K key, ref V[] overlaps)
|
||||
{
|
||||
if (key == null)
|
||||
{
|
||||
throw new ArgumentNullException(nameof(key));
|
||||
}
|
||||
|
||||
IntervalTreeNode<K, V> node = GetNode(key);
|
||||
|
||||
if (node == null)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (node.Values.Count > overlaps.Length)
|
||||
{
|
||||
Array.Resize(ref overlaps, node.Values.Count);
|
||||
}
|
||||
|
||||
int overlapsCount = 0;
|
||||
foreach (RangeNode<K, V> value in node.Values)
|
||||
{
|
||||
overlaps[overlapsCount++] = value.Value;
|
||||
}
|
||||
|
||||
return overlapsCount;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns the values of the intervals whose start and end keys overlap the given range.
|
||||
/// </summary>
|
||||
/// <param name="start">Start of the range</param>
|
||||
/// <param name="end">End of the range</param>
|
||||
/// <param name="overlaps">Overlaps array to place results in</param>
|
||||
/// <param name="overlapCount">Index to start writing results into the array. Defaults to 0</param>
|
||||
/// <returns>Number of values found</returns>
|
||||
/// <exception cref="ArgumentNullException"><paramref name="start"/> or <paramref name="end"/> is null</exception>
|
||||
public int Get(K start, K end, ref V[] overlaps, int overlapCount = 0)
|
||||
{
|
||||
if (start == null)
|
||||
{
|
||||
throw new ArgumentNullException(nameof(start));
|
||||
}
|
||||
|
||||
if (end == null)
|
||||
{
|
||||
throw new ArgumentNullException(nameof(end));
|
||||
}
|
||||
|
||||
GetValues(_root, start, end, ref overlaps, ref overlapCount);
|
||||
|
||||
return overlapCount;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Adds a new interval into the tree whose start is <paramref name="start"/>, end is <paramref name="end"/> and value is <paramref name="value"/>.
|
||||
/// </summary>
|
||||
/// <param name="start">Start of the range to add</param>
|
||||
/// <param name="end">End of the range to insert</param>
|
||||
/// <param name="value">Value to add</param>
|
||||
/// <exception cref="ArgumentNullException"><paramref name="start"/>, <paramref name="end"/> or <paramref name="value"/> are null</exception>
|
||||
public void Add(K start, K end, V value)
|
||||
{
|
||||
if (start == null)
|
||||
{
|
||||
throw new ArgumentNullException(nameof(start));
|
||||
}
|
||||
|
||||
if (end == null)
|
||||
{
|
||||
throw new ArgumentNullException(nameof(end));
|
||||
}
|
||||
|
||||
if (value == null)
|
||||
{
|
||||
throw new ArgumentNullException(nameof(value));
|
||||
}
|
||||
|
||||
Insert(start, end, value);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Removes the given <paramref name="value"/> from the tree, searching for it with <paramref name="key"/>.
|
||||
/// </summary>
|
||||
/// <param name="key">Key of the node to remove</param>
|
||||
/// <param name="value">Value to remove</param>
|
||||
/// <exception cref="ArgumentNullException"><paramref name="key"/> is null</exception>
|
||||
/// <returns>Number of deleted values</returns>
|
||||
public int Remove(K key, V value)
|
||||
{
|
||||
if (key == null)
|
||||
{
|
||||
throw new ArgumentNullException(nameof(key));
|
||||
}
|
||||
|
||||
int removed = Delete(key, value);
|
||||
|
||||
_count -= removed;
|
||||
|
||||
return removed;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Adds all the nodes in the dictionary into <paramref name="list"/>.
|
||||
/// </summary>
|
||||
/// <returns>A list of all RangeNodes sorted by Key Order</returns>
|
||||
public List<RangeNode<K, V>> AsList()
|
||||
{
|
||||
List<RangeNode<K, V>> list = new List<RangeNode<K, V>>();
|
||||
|
||||
AddToList(_root, list);
|
||||
|
||||
return list;
|
||||
}
|
||||
|
||||
#endregion
|
||||
|
||||
#region Private Methods (BST)
|
||||
|
||||
/// <summary>
|
||||
/// Adds all RangeNodes that are children of or contained within <paramref name="node"/> into <paramref name="list"/>, in Key Order.
|
||||
/// </summary>
|
||||
/// <param name="node">The node to search for RangeNodes within</param>
|
||||
/// <param name="list">The list to add RangeNodes to</param>
|
||||
private void AddToList(IntervalTreeNode<K, V> node, List<RangeNode<K, V>> list)
|
||||
{
|
||||
if (node == null)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
AddToList(node.Left, list);
|
||||
|
||||
list.AddRange(node.Values);
|
||||
|
||||
AddToList(node.Right, list);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Retrieve the node reference whose key is <paramref name="key"/>, or null if no such node exists.
|
||||
/// </summary>
|
||||
/// <param name="key">Key of the node to get</param>
|
||||
/// <returns>Node reference in the tree</returns>
|
||||
/// <exception cref="ArgumentNullException"><paramref name="key"/> is null</exception>
|
||||
private IntervalTreeNode<K, V> GetNode(K key)
|
||||
{
|
||||
if (key == null)
|
||||
{
|
||||
throw new ArgumentNullException(nameof(key));
|
||||
}
|
||||
|
||||
IntervalTreeNode<K, V> node = _root;
|
||||
while (node != null)
|
||||
{
|
||||
int cmp = key.CompareTo(node.Start);
|
||||
if (cmp < 0)
|
||||
{
|
||||
node = node.Left;
|
||||
}
|
||||
else if (cmp > 0)
|
||||
{
|
||||
node = node.Right;
|
||||
}
|
||||
else
|
||||
{
|
||||
return node;
|
||||
}
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Retrieve all values that overlap the given start and end keys.
|
||||
/// </summary>
|
||||
/// <param name="start">Start of the range</param>
|
||||
/// <param name="end">End of the range</param>
|
||||
/// <param name="overlaps">Overlaps array to place results in</param>
|
||||
/// <param name="overlapCount">Overlaps count to update</param>
|
||||
private void GetValues(IntervalTreeNode<K, V> node, K start, K end, ref V[] overlaps, ref int overlapCount)
|
||||
{
|
||||
if (node == null || start.CompareTo(node.Max) >= 0)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
GetValues(node.Left, start, end, ref overlaps, ref overlapCount);
|
||||
|
||||
bool endsOnRight = end.CompareTo(node.Start) > 0;
|
||||
if (endsOnRight)
|
||||
{
|
||||
if (start.CompareTo(node.End) < 0)
|
||||
{
|
||||
// Contains this node. Add overlaps to list.
|
||||
foreach (RangeNode<K,V> overlap in node.Values)
|
||||
{
|
||||
if (start.CompareTo(overlap.End) < 0)
|
||||
{
|
||||
if (overlaps.Length >= overlapCount)
|
||||
{
|
||||
Array.Resize(ref overlaps, overlapCount + ArrayGrowthSize);
|
||||
}
|
||||
|
||||
overlaps[overlapCount++] = overlap.Value;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
GetValues(node.Right, start, end, ref overlaps, ref overlapCount);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Inserts a new node into the tree with a given <paramref name="start"/>, <paramref name="end"/> and <paramref name="value"/>.
|
||||
/// </summary>
|
||||
/// <param name="start">Start of the range to insert</param>
|
||||
/// <param name="end">End of the range to insert</param>
|
||||
/// <param name="value">Value to insert</param>
|
||||
private void Insert(K start, K end, V value)
|
||||
{
|
||||
IntervalTreeNode<K, V> newNode = BSTInsert(start, end, value);
|
||||
RestoreBalanceAfterInsertion(newNode);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Propagate an increase in max value starting at the given node, heading up the tree.
|
||||
/// This should only be called if the max increases - not for rebalancing or removals.
|
||||
/// </summary>
|
||||
/// <param name="node">The node to start propagating from</param>
|
||||
private void PropagateIncrease(IntervalTreeNode<K, V> node)
|
||||
{
|
||||
K max = node.Max;
|
||||
IntervalTreeNode<K, V> ptr = node;
|
||||
|
||||
while ((ptr = ptr.Parent) != null)
|
||||
{
|
||||
if (max.CompareTo(ptr.Max) > 0)
|
||||
{
|
||||
ptr.Max = max;
|
||||
}
|
||||
else
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Propagate recalculating max value starting at the given node, heading up the tree.
|
||||
/// This fully recalculates the max value from all children when there is potential for it to decrease.
|
||||
/// </summary>
|
||||
/// <param name="node">The node to start propagating from</param>
|
||||
private void PropagateFull(IntervalTreeNode<K, V> node)
|
||||
{
|
||||
IntervalTreeNode<K, V> ptr = node;
|
||||
|
||||
do
|
||||
{
|
||||
K max = ptr.End;
|
||||
|
||||
if (ptr.Left != null && ptr.Left.Max.CompareTo(max) > 0)
|
||||
{
|
||||
max = ptr.Left.Max;
|
||||
}
|
||||
|
||||
if (ptr.Right != null && ptr.Right.Max.CompareTo(max) > 0)
|
||||
{
|
||||
max = ptr.Right.Max;
|
||||
}
|
||||
|
||||
ptr.Max = max;
|
||||
} while ((ptr = ptr.Parent) != null);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Insertion Mechanism for the interval tree. Similar to a BST insert, with the start of the range as the key.
|
||||
/// Iterates the tree starting from the root and inserts a new node where all children in the left subtree are less than <paramref name="start"/>, and all children in the right subtree are greater than <paramref name="start"/>.
|
||||
/// Each node can contain multiple values, and has an end address which is the maximum of all those values.
|
||||
/// Post insertion, the "max" value of the node and all parents are updated.
|
||||
/// </summary>
|
||||
/// <param name="start">Start of the range to insert</param>
|
||||
/// <param name="end">End of the range to insert</param>
|
||||
/// <param name="value">Value to insert</param>
|
||||
/// <returns>The inserted Node</returns>
|
||||
private IntervalTreeNode<K, V> BSTInsert(K start, K end, V value)
|
||||
{
|
||||
IntervalTreeNode<K, V> parent = null;
|
||||
IntervalTreeNode<K, V> node = _root;
|
||||
|
||||
while (node != null)
|
||||
{
|
||||
parent = node;
|
||||
int cmp = start.CompareTo(node.Start);
|
||||
if (cmp < 0)
|
||||
{
|
||||
node = node.Left;
|
||||
}
|
||||
else if (cmp > 0)
|
||||
{
|
||||
node = node.Right;
|
||||
}
|
||||
else
|
||||
{
|
||||
node.Values.Add(new RangeNode<K, V>(start, end, value));
|
||||
|
||||
if (end.CompareTo(node.End) > 0)
|
||||
{
|
||||
node.End = end;
|
||||
if (end.CompareTo(node.Max) > 0)
|
||||
{
|
||||
node.Max = end;
|
||||
PropagateIncrease(node);
|
||||
}
|
||||
}
|
||||
|
||||
_count++;
|
||||
return node;
|
||||
}
|
||||
}
|
||||
IntervalTreeNode<K, V> newNode = new IntervalTreeNode<K, V>(start, end, value, parent);
|
||||
if (newNode.Parent == null)
|
||||
{
|
||||
_root = newNode;
|
||||
}
|
||||
else if (start.CompareTo(parent.Start) < 0)
|
||||
{
|
||||
parent.Left = newNode;
|
||||
}
|
||||
else
|
||||
{
|
||||
parent.Right = newNode;
|
||||
}
|
||||
|
||||
PropagateIncrease(newNode);
|
||||
_count++;
|
||||
return newNode;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Removes instances of <paramref name="value"> from the dictionary after searching for it with <paramref name="key">.
|
||||
/// </summary>
|
||||
/// <param name="key">Key to search for</param>
|
||||
/// <param name="value">Value to delete</param>
|
||||
/// <returns>Number of deleted values</returns>
|
||||
private int Delete(K key, V value)
|
||||
{
|
||||
IntervalTreeNode<K, V> nodeToDelete = GetNode(key);
|
||||
|
||||
if (nodeToDelete == null)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
int removed = nodeToDelete.Values.RemoveAll(node => node.Value.Equals(value));
|
||||
|
||||
if (nodeToDelete.Values.Count > 0)
|
||||
{
|
||||
if (removed > 0)
|
||||
{
|
||||
nodeToDelete.End = nodeToDelete.Values.Max(node => node.End);
|
||||
|
||||
// Recalculate max from children and new end.
|
||||
PropagateFull(nodeToDelete);
|
||||
}
|
||||
|
||||
return removed;
|
||||
}
|
||||
|
||||
IntervalTreeNode<K, V> replacementNode;
|
||||
|
||||
if (LeftOf(nodeToDelete) == null || RightOf(nodeToDelete) == null)
|
||||
{
|
||||
replacementNode = nodeToDelete;
|
||||
}
|
||||
else
|
||||
{
|
||||
replacementNode = PredecessorOf(nodeToDelete);
|
||||
}
|
||||
|
||||
IntervalTreeNode<K, V> tmp = LeftOf(replacementNode) ?? RightOf(replacementNode);
|
||||
|
||||
if (tmp != null)
|
||||
{
|
||||
tmp.Parent = ParentOf(replacementNode);
|
||||
}
|
||||
|
||||
if (ParentOf(replacementNode) == null)
|
||||
{
|
||||
_root = tmp;
|
||||
}
|
||||
else if (replacementNode == LeftOf(ParentOf(replacementNode)))
|
||||
{
|
||||
ParentOf(replacementNode).Left = tmp;
|
||||
}
|
||||
else
|
||||
{
|
||||
ParentOf(replacementNode).Right = tmp;
|
||||
}
|
||||
|
||||
if (replacementNode != nodeToDelete)
|
||||
{
|
||||
nodeToDelete.Start = replacementNode.Start;
|
||||
nodeToDelete.Values = replacementNode.Values;
|
||||
nodeToDelete.End = replacementNode.End;
|
||||
nodeToDelete.Max = replacementNode.Max;
|
||||
}
|
||||
|
||||
PropagateFull(replacementNode);
|
||||
|
||||
if (tmp != null && ColorOf(replacementNode) == Black)
|
||||
{
|
||||
RestoreBalanceAfterRemoval(tmp);
|
||||
}
|
||||
|
||||
return removed;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns the node with the largest key where <paramref name="node"/> is considered the root node.
|
||||
/// </summary>
|
||||
/// <param name="node">Root Node</param>
|
||||
/// <returns>Node with the maximum key in the tree of <paramref name="node"/></returns>
|
||||
private static IntervalTreeNode<K, V> Maximum(IntervalTreeNode<K, V> node)
|
||||
{
|
||||
IntervalTreeNode<K, V> tmp = node;
|
||||
while (tmp.Right != null)
|
||||
{
|
||||
tmp = tmp.Right;
|
||||
}
|
||||
|
||||
return tmp;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Finds the node whose key is immediately less than <paramref name="node"/>.
|
||||
/// </summary>
|
||||
/// <param name="node">Node to find the predecessor of</param>
|
||||
/// <returns>Predecessor of <paramref name="node"/></returns>
|
||||
private static IntervalTreeNode<K, V> PredecessorOf(IntervalTreeNode<K, V> node)
|
||||
{
|
||||
if (node.Left != null)
|
||||
{
|
||||
return Maximum(node.Left);
|
||||
}
|
||||
IntervalTreeNode<K, V> parent = node.Parent;
|
||||
while (parent != null && node == parent.Left)
|
||||
{
|
||||
node = parent;
|
||||
parent = parent.Parent;
|
||||
}
|
||||
return parent;
|
||||
}
|
||||
#endregion
|
||||
|
||||
#region Private Methods (RBL)
|
||||
private void RestoreBalanceAfterRemoval(IntervalTreeNode<K, V> balanceNode)
|
||||
{
|
||||
IntervalTreeNode<K, V> ptr = balanceNode;
|
||||
|
||||
while (ptr != _root && ColorOf(ptr) == Black)
|
||||
{
|
||||
if (ptr == LeftOf(ParentOf(ptr)))
|
||||
{
|
||||
IntervalTreeNode<K, V> sibling = RightOf(ParentOf(ptr));
|
||||
|
||||
if (ColorOf(sibling) == Red)
|
||||
{
|
||||
SetColor(sibling, Black);
|
||||
SetColor(ParentOf(ptr), Red);
|
||||
RotateLeft(ParentOf(ptr));
|
||||
sibling = RightOf(ParentOf(ptr));
|
||||
}
|
||||
if (ColorOf(LeftOf(sibling)) == Black && ColorOf(RightOf(sibling)) == Black)
|
||||
{
|
||||
SetColor(sibling, Red);
|
||||
ptr = ParentOf(ptr);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (ColorOf(RightOf(sibling)) == Black)
|
||||
{
|
||||
SetColor(LeftOf(sibling), Black);
|
||||
SetColor(sibling, Red);
|
||||
RotateRight(sibling);
|
||||
sibling = RightOf(ParentOf(ptr));
|
||||
}
|
||||
SetColor(sibling, ColorOf(ParentOf(ptr)));
|
||||
SetColor(ParentOf(ptr), Black);
|
||||
SetColor(RightOf(sibling), Black);
|
||||
RotateLeft(ParentOf(ptr));
|
||||
ptr = _root;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
IntervalTreeNode<K, V> sibling = LeftOf(ParentOf(ptr));
|
||||
|
||||
if (ColorOf(sibling) == Red)
|
||||
{
|
||||
SetColor(sibling, Black);
|
||||
SetColor(ParentOf(ptr), Red);
|
||||
RotateRight(ParentOf(ptr));
|
||||
sibling = LeftOf(ParentOf(ptr));
|
||||
}
|
||||
if (ColorOf(RightOf(sibling)) == Black && ColorOf(LeftOf(sibling)) == Black)
|
||||
{
|
||||
SetColor(sibling, Red);
|
||||
ptr = ParentOf(ptr);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (ColorOf(LeftOf(sibling)) == Black)
|
||||
{
|
||||
SetColor(RightOf(sibling), Black);
|
||||
SetColor(sibling, Red);
|
||||
RotateLeft(sibling);
|
||||
sibling = LeftOf(ParentOf(ptr));
|
||||
}
|
||||
SetColor(sibling, ColorOf(ParentOf(ptr)));
|
||||
SetColor(ParentOf(ptr), Black);
|
||||
SetColor(LeftOf(sibling), Black);
|
||||
RotateRight(ParentOf(ptr));
|
||||
ptr = _root;
|
||||
}
|
||||
}
|
||||
}
|
||||
SetColor(ptr, Black);
|
||||
}
|
||||
|
||||
private void RestoreBalanceAfterInsertion(IntervalTreeNode<K, V> balanceNode)
|
||||
{
|
||||
SetColor(balanceNode, Red);
|
||||
while (balanceNode != null && balanceNode != _root && ColorOf(ParentOf(balanceNode)) == Red)
|
||||
{
|
||||
if (ParentOf(balanceNode) == LeftOf(ParentOf(ParentOf(balanceNode))))
|
||||
{
|
||||
IntervalTreeNode<K, V> sibling = RightOf(ParentOf(ParentOf(balanceNode)));
|
||||
|
||||
if (ColorOf(sibling) == Red)
|
||||
{
|
||||
SetColor(ParentOf(balanceNode), Black);
|
||||
SetColor(sibling, Black);
|
||||
SetColor(ParentOf(ParentOf(balanceNode)), Red);
|
||||
balanceNode = ParentOf(ParentOf(balanceNode));
|
||||
}
|
||||
else
|
||||
{
|
||||
if (balanceNode == RightOf(ParentOf(balanceNode)))
|
||||
{
|
||||
balanceNode = ParentOf(balanceNode);
|
||||
RotateLeft(balanceNode);
|
||||
}
|
||||
SetColor(ParentOf(balanceNode), Black);
|
||||
SetColor(ParentOf(ParentOf(balanceNode)), Red);
|
||||
RotateRight(ParentOf(ParentOf(balanceNode)));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
IntervalTreeNode<K, V> sibling = LeftOf(ParentOf(ParentOf(balanceNode)));
|
||||
|
||||
if (ColorOf(sibling) == Red)
|
||||
{
|
||||
SetColor(ParentOf(balanceNode), Black);
|
||||
SetColor(sibling, Black);
|
||||
SetColor(ParentOf(ParentOf(balanceNode)), Red);
|
||||
balanceNode = ParentOf(ParentOf(balanceNode));
|
||||
}
|
||||
else
|
||||
{
|
||||
if (balanceNode == LeftOf(ParentOf(balanceNode)))
|
||||
{
|
||||
balanceNode = ParentOf(balanceNode);
|
||||
RotateRight(balanceNode);
|
||||
}
|
||||
SetColor(ParentOf(balanceNode), Black);
|
||||
SetColor(ParentOf(ParentOf(balanceNode)), Red);
|
||||
RotateLeft(ParentOf(ParentOf(balanceNode)));
|
||||
}
|
||||
}
|
||||
}
|
||||
SetColor(_root, Black);
|
||||
}
|
||||
|
||||
private void RotateLeft(IntervalTreeNode<K, V> node)
|
||||
{
|
||||
if (node != null)
|
||||
{
|
||||
IntervalTreeNode<K, V> right = RightOf(node);
|
||||
node.Right = LeftOf(right);
|
||||
if (node.Right != null)
|
||||
{
|
||||
node.Right.Parent = node;
|
||||
}
|
||||
IntervalTreeNode<K, V> nodeParent = ParentOf(node);
|
||||
right.Parent = nodeParent;
|
||||
if (nodeParent == null)
|
||||
{
|
||||
_root = right;
|
||||
}
|
||||
else if (node == LeftOf(nodeParent))
|
||||
{
|
||||
nodeParent.Left = right;
|
||||
}
|
||||
else
|
||||
{
|
||||
nodeParent.Right = right;
|
||||
}
|
||||
right.Left = node;
|
||||
node.Parent = right;
|
||||
|
||||
PropagateFull(node);
|
||||
}
|
||||
}
|
||||
|
||||
private void RotateRight(IntervalTreeNode<K, V> node)
|
||||
{
|
||||
if (node != null)
|
||||
{
|
||||
IntervalTreeNode<K, V> left = LeftOf(node);
|
||||
node.Left = RightOf(left);
|
||||
if (node.Left != null)
|
||||
{
|
||||
node.Left.Parent = node;
|
||||
}
|
||||
IntervalTreeNode<K, V> nodeParent = ParentOf(node);
|
||||
left.Parent = nodeParent;
|
||||
if (nodeParent == null)
|
||||
{
|
||||
_root = left;
|
||||
}
|
||||
else if (node == RightOf(nodeParent))
|
||||
{
|
||||
nodeParent.Right = left;
|
||||
}
|
||||
else
|
||||
{
|
||||
nodeParent.Left = left;
|
||||
}
|
||||
left.Right = node;
|
||||
node.Parent = left;
|
||||
|
||||
PropagateFull(node);
|
||||
}
|
||||
}
|
||||
#endregion
|
||||
|
||||
#region Safety-Methods
|
||||
|
||||
// These methods save memory by allowing us to forego sentinel nil nodes, as well as serve as protection against NullReferenceExceptions.
|
||||
|
||||
/// <summary>
|
||||
/// Returns the color of <paramref name="node"/>, or Black if it is null.
|
||||
/// </summary>
|
||||
/// <param name="node">Node</param>
|
||||
/// <returns>The boolean color of <paramref name="node"/>, or black if null</returns>
|
||||
private static bool ColorOf(IntervalTreeNode<K, V> node)
|
||||
{
|
||||
return node == null || node.Color;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Sets the color of <paramref name="node"/> node to <paramref name="color"/>.
|
||||
/// <br></br>
|
||||
/// This method does nothing if <paramref name="node"/> is null.
|
||||
/// </summary>
|
||||
/// <param name="node">Node to set the color of</param>
|
||||
/// <param name="color">Color (Boolean)</param>
|
||||
private static void SetColor(IntervalTreeNode<K, V> node, bool color)
|
||||
{
|
||||
if (node != null)
|
||||
{
|
||||
node.Color = color;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// This method returns the left node of <paramref name="node"/>, or null if <paramref name="node"/> is null.
|
||||
/// </summary>
|
||||
/// <param name="node">Node to retrieve the left child from</param>
|
||||
/// <returns>Left child of <paramref name="node"/></returns>
|
||||
private static IntervalTreeNode<K, V> LeftOf(IntervalTreeNode<K, V> node)
|
||||
{
|
||||
return node?.Left;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// This method returns the right node of <paramref name="node"/>, or null if <paramref name="node"/> is null.
|
||||
/// </summary>
|
||||
/// <param name="node">Node to retrieve the right child from</param>
|
||||
/// <returns>Right child of <paramref name="node"/></returns>
|
||||
private static IntervalTreeNode<K, V> RightOf(IntervalTreeNode<K, V> node)
|
||||
{
|
||||
return node?.Right;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns the parent node of <paramref name="node"/>, or null if <paramref name="node"/> is null.
|
||||
/// </summary>
|
||||
/// <param name="node">Node to retrieve the parent from</param>
|
||||
/// <returns>Parent of <paramref name="node"/></returns>
|
||||
private static IntervalTreeNode<K, V> ParentOf(IntervalTreeNode<K, V> node)
|
||||
{
|
||||
return node?.Parent;
|
||||
}
|
||||
#endregion
|
||||
|
||||
public bool ContainsKey(K key)
|
||||
{
|
||||
if (key == null)
|
||||
{
|
||||
throw new ArgumentNullException(nameof(key));
|
||||
}
|
||||
return GetNode(key) != null;
|
||||
}
|
||||
|
||||
public void Clear()
|
||||
{
|
||||
_root = null;
|
||||
_count = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Represents a value and its start and end keys.
|
||||
/// </summary>
|
||||
/// <typeparam name="K"></typeparam>
|
||||
/// <typeparam name="V"></typeparam>
|
||||
public readonly struct RangeNode<K, V>
|
||||
{
|
||||
public readonly K Start;
|
||||
public readonly K End;
|
||||
public readonly V Value;
|
||||
|
||||
public RangeNode(K start, K end, V value)
|
||||
{
|
||||
Start = start;
|
||||
End = end;
|
||||
Value = value;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Represents a node in the IntervalTree which contains start and end keys of type K, and a value of generic type V.
|
||||
/// </summary>
|
||||
/// <typeparam name="K">Key type of the node</typeparam>
|
||||
/// <typeparam name="V">Value type of the node</typeparam>
|
||||
internal class IntervalTreeNode<K, V>
|
||||
{
|
||||
internal bool Color = true;
|
||||
internal IntervalTreeNode<K, V> Left = null;
|
||||
internal IntervalTreeNode<K, V> Right = null;
|
||||
internal IntervalTreeNode<K, V> Parent = null;
|
||||
|
||||
/// <summary>
|
||||
/// The start of the range.
|
||||
/// </summary>
|
||||
internal K Start;
|
||||
|
||||
/// <summary>
|
||||
/// The end of the range - maximum of all in the Values list.
|
||||
/// </summary>
|
||||
internal K End;
|
||||
|
||||
/// <summary>
|
||||
/// The maximum end value of this node and all its children.
|
||||
/// </summary>
|
||||
internal K Max;
|
||||
|
||||
internal List<RangeNode<K, V>> Values;
|
||||
|
||||
public IntervalTreeNode(K start, K end, V value, IntervalTreeNode<K, V> parent)
|
||||
{
|
||||
this.Start = start;
|
||||
this.End = end;
|
||||
this.Max = end;
|
||||
this.Values = new List<RangeNode<K, V>> { new RangeNode<K, V>(start, end, value) };
|
||||
this.Parent = parent;
|
||||
}
|
||||
}
|
||||
}
|
@ -182,38 +182,40 @@ namespace Ryujinx.Common.Collections
|
||||
|
||||
/// <summary>
|
||||
/// Adds all the nodes in the dictionary into <paramref name="list"/>.
|
||||
/// <br></br>
|
||||
/// The nodes will be added in Sorted by Key Order.
|
||||
/// </summary>
|
||||
/// <returns>A list of all KeyValuePairs sorted by Key Order</returns>
|
||||
public List<KeyValuePair<K, V>> AsList()
|
||||
{
|
||||
List<KeyValuePair<K, V>> list = new List<KeyValuePair<K, V>>();
|
||||
|
||||
Queue<Node<K, V>> nodes = new Queue<Node<K, V>>();
|
||||
|
||||
if (this._root != null)
|
||||
{
|
||||
nodes.Enqueue(this._root);
|
||||
}
|
||||
while (nodes.Count > 0)
|
||||
{
|
||||
Node<K, V> node = nodes.Dequeue();
|
||||
list.Add(new KeyValuePair<K, V>(node.Key, node.Value));
|
||||
if (node.Left != null)
|
||||
{
|
||||
nodes.Enqueue(node.Left);
|
||||
}
|
||||
if (node.Right != null)
|
||||
{
|
||||
nodes.Enqueue(node.Right);
|
||||
}
|
||||
}
|
||||
AddToList(_root, list);
|
||||
|
||||
return list;
|
||||
}
|
||||
|
||||
#endregion
|
||||
|
||||
#region Private Methods (BST)
|
||||
|
||||
/// <summary>
|
||||
/// Adds all nodes that are children of or contained within <paramref name="node"/> into <paramref name="list"/>, in Key Order.
|
||||
/// </summary>
|
||||
/// <param name="node">The node to search for nodes within</param>
|
||||
/// <param name="list">The list to add node to</param>
|
||||
private void AddToList(Node<K, V> node, List<KeyValuePair<K, V>> list)
|
||||
{
|
||||
if (node == null)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
AddToList(node.Left, list);
|
||||
|
||||
list.Add(new KeyValuePair<K, V>(node.Key, node.Value));
|
||||
|
||||
AddToList(node.Right, list);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Retrieve the node reference whose key is <paramref name="key"/>, or null if no such node exists.
|
||||
/// </summary>
|
||||
@ -373,13 +375,8 @@ namespace Ryujinx.Common.Collections
|
||||
/// </summary>
|
||||
/// <param name="node">Root Node</param>
|
||||
/// <returns>Node with the maximum key in the tree of <paramref name="node"/></returns>
|
||||
/// <exception cref="ArgumentNullException"><paramref name="node"/> is null</exception>
|
||||
private static Node<K, V> Maximum(Node<K, V> node)
|
||||
{
|
||||
if (node == null)
|
||||
{
|
||||
throw new ArgumentNullException(nameof(node));
|
||||
}
|
||||
Node<K, V> tmp = node;
|
||||
while (tmp.Right != null)
|
||||
{
|
||||
@ -519,7 +516,7 @@ namespace Ryujinx.Common.Collections
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Finds the node with the key immediately greater than <paramref name="node"/>.Key.
|
||||
/// Finds the node with the key is immediately greater than <paramref name="node"/>.
|
||||
/// </summary>
|
||||
/// <param name="node">Node to find the successor of</param>
|
||||
/// <returns>Successor of <paramref name="node"/></returns>
|
||||
@ -539,7 +536,7 @@ namespace Ryujinx.Common.Collections
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Finds the node whose key immediately less than <paramref name="node"/>.Key.
|
||||
/// Finds the node whose key is immediately less than <paramref name="node"/>.
|
||||
/// </summary>
|
||||
/// <param name="node">Node to find the predecessor of</param>
|
||||
/// <returns>Predecessor of <paramref name="node"/></returns>
|
||||
@ -557,7 +554,9 @@ namespace Ryujinx.Common.Collections
|
||||
}
|
||||
return parent;
|
||||
}
|
||||
|
||||
#endregion
|
||||
|
||||
#region Private Methods (RBL)
|
||||
|
||||
private void RestoreBalanceAfterRemoval(Node<K, V> balanceNode)
|
||||
@ -748,7 +747,7 @@ namespace Ryujinx.Common.Collections
|
||||
|
||||
#region Safety-Methods
|
||||
|
||||
// These methods save memory by allowing us to forego sentinel nil nodes, as well as serve as protection against nullpointerexceptions.
|
||||
// These methods save memory by allowing us to forego sentinel nil nodes, as well as serve as protection against NullReferenceExceptions.
|
||||
|
||||
/// <summary>
|
||||
/// Returns the color of <paramref name="node"/>, or Black if it is null.
|
||||
|
@ -1,27 +1,21 @@
|
||||
using System;
|
||||
using Ryujinx.Common.Collections;
|
||||
using System.Collections;
|
||||
using System.Collections.Generic;
|
||||
|
||||
namespace Ryujinx.Memory.Range
|
||||
{
|
||||
/// <summary>
|
||||
/// Sorted list of ranges that supports binary search.
|
||||
/// </summary>
|
||||
/// <typeparam name="T">Type of the range.</typeparam>
|
||||
public class MultiRangeList<T> : IEnumerable<T> where T : IMultiRangeItem
|
||||
{
|
||||
private const int ArrayGrowthSize = 32;
|
||||
private readonly IntervalTree<ulong, T> _items;
|
||||
|
||||
private readonly List<T> _items;
|
||||
|
||||
public int Count => _items.Count;
|
||||
public int Count { get; private set; }
|
||||
|
||||
/// <summary>
|
||||
/// Creates a new range list.
|
||||
/// </summary>
|
||||
public MultiRangeList()
|
||||
{
|
||||
_items = new List<T>();
|
||||
_items = new IntervalTree<ulong, T>();
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
@ -30,14 +24,15 @@ namespace Ryujinx.Memory.Range
|
||||
/// <param name="item">The item to be added</param>
|
||||
public void Add(T item)
|
||||
{
|
||||
int index = BinarySearch(item.BaseAddress);
|
||||
MultiRange range = item.Range;
|
||||
|
||||
if (index < 0)
|
||||
for (int i = 0; i < range.Count; i++)
|
||||
{
|
||||
index = ~index;
|
||||
var subrange = range.GetSubRange(i);
|
||||
_items.Add(subrange.Address, subrange.EndAddress, item);
|
||||
}
|
||||
|
||||
_items.Insert(index, item);
|
||||
Count++;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
@ -47,34 +42,23 @@ namespace Ryujinx.Memory.Range
|
||||
/// <returns>True if the item was removed, or false if it was not found</returns>
|
||||
public bool Remove(T item)
|
||||
{
|
||||
int index = BinarySearch(item.BaseAddress);
|
||||
MultiRange range = item.Range;
|
||||
|
||||
if (index >= 0)
|
||||
int removed = 0;
|
||||
|
||||
for (int i = 0; i < range.Count; i++)
|
||||
{
|
||||
while (index > 0 && _items[index - 1].BaseAddress == item.BaseAddress)
|
||||
{
|
||||
index--;
|
||||
}
|
||||
|
||||
while (index < _items.Count)
|
||||
{
|
||||
if (_items[index].Equals(item))
|
||||
{
|
||||
_items.RemoveAt(index);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
if (_items[index].BaseAddress > item.BaseAddress)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
index++;
|
||||
}
|
||||
var subrange = range.GetSubRange(i);
|
||||
removed += _items.Remove(subrange.Address, item);
|
||||
}
|
||||
|
||||
return false;
|
||||
if (removed > 0)
|
||||
{
|
||||
// All deleted intervals are for the same item - the one we removed.
|
||||
Count--;
|
||||
}
|
||||
|
||||
return removed > 0;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
@ -97,22 +81,47 @@ namespace Ryujinx.Memory.Range
|
||||
/// <returns>The number of overlapping items found</returns>
|
||||
public int FindOverlaps(MultiRange range, ref T[] output)
|
||||
{
|
||||
int outputIndex = 0;
|
||||
int overlapCount = 0;
|
||||
|
||||
foreach (T item in _items)
|
||||
for (int i = 0; i < range.Count; i++)
|
||||
{
|
||||
if (item.Range.OverlapsWith(range))
|
||||
{
|
||||
if (outputIndex == output.Length)
|
||||
{
|
||||
Array.Resize(ref output, outputIndex + ArrayGrowthSize);
|
||||
}
|
||||
|
||||
output[outputIndex++] = item;
|
||||
}
|
||||
var subrange = range.GetSubRange(i);
|
||||
overlapCount = _items.Get(subrange.Address, subrange.EndAddress, ref output, overlapCount);
|
||||
}
|
||||
|
||||
return outputIndex;
|
||||
// Remove any duplicates, caused by items having multiple sub range nodes in the tree.
|
||||
if (overlapCount > 1)
|
||||
{
|
||||
int insertPtr = 0;
|
||||
for (int i = 0; i < overlapCount; i++)
|
||||
{
|
||||
T item = output[i];
|
||||
bool duplicate = false;
|
||||
|
||||
for (int j = insertPtr - 1; j >= 0; j--)
|
||||
{
|
||||
if (item.Equals(output[j]))
|
||||
{
|
||||
duplicate = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!duplicate)
|
||||
{
|
||||
if (insertPtr != i)
|
||||
{
|
||||
output[insertPtr] = item;
|
||||
}
|
||||
|
||||
insertPtr++;
|
||||
}
|
||||
}
|
||||
|
||||
overlapCount = insertPtr;
|
||||
}
|
||||
|
||||
return overlapCount;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
@ -123,82 +132,50 @@ namespace Ryujinx.Memory.Range
|
||||
/// <returns>The number of matches found</returns>
|
||||
public int FindOverlaps(ulong baseAddress, ref T[] output)
|
||||
{
|
||||
int index = BinarySearch(baseAddress);
|
||||
int count = _items.Get(baseAddress, ref output);
|
||||
|
||||
int outputIndex = 0;
|
||||
|
||||
if (index >= 0)
|
||||
// Only output items with matching base address
|
||||
int insertPtr = 0;
|
||||
for (int i = 0; i < count; i++)
|
||||
{
|
||||
while (index > 0 && _items[index - 1].BaseAddress == baseAddress)
|
||||
if (output[i].BaseAddress == baseAddress)
|
||||
{
|
||||
index--;
|
||||
}
|
||||
|
||||
while (index < _items.Count)
|
||||
{
|
||||
T overlap = _items[index++];
|
||||
|
||||
if (overlap.BaseAddress != baseAddress)
|
||||
if (i != insertPtr)
|
||||
{
|
||||
break;
|
||||
output[insertPtr] = output[i];
|
||||
}
|
||||
|
||||
if (outputIndex == output.Length)
|
||||
{
|
||||
Array.Resize(ref output, outputIndex + ArrayGrowthSize);
|
||||
}
|
||||
|
||||
output[outputIndex++] = overlap;
|
||||
insertPtr++;
|
||||
}
|
||||
}
|
||||
|
||||
return outputIndex;
|
||||
return insertPtr;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Performs binary search on the internal list of items.
|
||||
/// </summary>
|
||||
/// <param name="address">Address to find</param>
|
||||
/// <returns>List index of the item, or complement index of nearest item with lower value on the list</returns>
|
||||
private int BinarySearch(ulong address)
|
||||
private List<T> GetList()
|
||||
{
|
||||
int left = 0;
|
||||
int right = _items.Count - 1;
|
||||
var items = _items.AsList();
|
||||
var result = new List<T>();
|
||||
|
||||
while (left <= right)
|
||||
foreach (RangeNode<ulong, T> item in items)
|
||||
{
|
||||
int range = right - left;
|
||||
|
||||
int middle = left + (range >> 1);
|
||||
|
||||
T item = _items[middle];
|
||||
|
||||
if (item.BaseAddress == address)
|
||||
if (item.Start == item.Value.BaseAddress)
|
||||
{
|
||||
return middle;
|
||||
}
|
||||
|
||||
if (address < item.BaseAddress)
|
||||
{
|
||||
right = middle - 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
left = middle + 1;
|
||||
result.Add(item.Value);
|
||||
}
|
||||
}
|
||||
|
||||
return ~left;
|
||||
return result;
|
||||
}
|
||||
|
||||
public IEnumerator<T> GetEnumerator()
|
||||
{
|
||||
return _items.GetEnumerator();
|
||||
return GetList().GetEnumerator();
|
||||
}
|
||||
|
||||
IEnumerator IEnumerable.GetEnumerator()
|
||||
{
|
||||
return _items.GetEnumerator();
|
||||
return GetList().GetEnumerator();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user