With all of the trivial parts of the memory interface moved over, we can
get right into moving over the bits that are used.
Note that this does require the use of GetInstance from the global
system instance to be used within hle_ipc.cpp and the gdbstub. This is
fine for the time being, as they both already rely on the global system
instance in other functions. These will be removed in a change directed
at both of these respectively.
For now, it's sufficient, as it still accomplishes the goal of
de-globalizing the memory code.
Amends a few interfaces to be able to handle the migration over to the
new Memory class by passing the class by reference as a function
parameter where necessary.
Notably, within the filesystem services, this eliminates two ReadBlock()
calls by using the helper functions of HLERequestContext to do that for
us.
These will eventually be migrated into the main Memory class, but for
now, we put them in an anonymous namespace, so that the other functions
that use them, can be migrated over separately.
A fairly straightforward migration. These member functions can just be
mostly moved verbatim with minor changes. We already have the necessary
plumbing in places that they're used.
IsKernelVirtualAddress() can remain a non-member function, since it
doesn't rely on class state in any form.
Migrates all of the direct mapping facilities over to the new memory
class. In the process, this also obsoletes the need for memory_setup.h,
so we can remove it entirely from the project.
Currently, the main memory management code is one of the remaining
places where we have global state. The next series of changes will aim
to rectify this.
This change simply introduces the main skeleton of the class that will
contain all the necessary state.
* core_timing: Use better reference tracking for EventType.
- Moves ownership of the event to the caller, ensuring we don't fire events for destroyed objects.
- Removes need for unique names - we won't be using this for save states anyways.
The heuristic to detect AMD's driver was not working properly since it
also included Intel. Instead of using heuristics to detect it, compare
the GL_VENDOR string.
We relies on UNREACHABLE's noreturn attribute to eliminate parent's "no return value" warning. However, this was wrapped in a `if(!false)` block, which compilers may not unfold to recognize the noreturn nature.
SSBOs and other resources are limited per pipeline on Intel and AMD.
Heuristically reserve resources per stage having in mind the reported
OpenGL limits.
The current shared memory size seems to be smaller than what the game
actually uses. This makes Nvidia's driver consistently blow up; in the
case of FE3H it made it explode on Qt's SwapBuffers while SDL2 worked
just fine. For now keep this hack since it's still progress over the
previous hardcoded shared memory size.
Drop the usage of ARB_compute_variable_group_size and specialize compute
shaders instead. This permits compute to run on AMD and Intel
proprietary drivers.
Some games like "Fire Emblem: Three Houses" bind 2D textures to offsets
used by instructions of 1D textures. To handle the discrepancy this
commit uses the the texture type from the binding and modifies the
emitted code IR to build a valid backend expression.
E.g.: Bound texture is 2D and instruction is 1D, the emitted IR samples
a 2D texture in the coordinate ivec2(X, 0).