Lets us keep the generic portions of the compatibility list code
together, and allows us to introduce a type alias that makes it so we
don't need to type out a very long type declaration anymore, making the
immediate readability of some code better.
- Fixed all warnings, for renderer_opengl items, which were indicating a
possible incorrect behavior from integral promotion rules and types
larger than those in which arithmetic is typically performed.
- Added const for variables where possible and meaningful.
- Added constexpr where possible.
When not set, this tells the GPU to only use the X size when performing a DMA copy.
This is only implemented for linear->linear and tiled->tiled copies. Conversion copies still retain the assert.
This bit is unset by some games for various purposes, and by nouveau when copying the vertex buffers.
* video_core: Arithmetic overflow fix for gl_rasterizer
- Fixed warnings, which were indicating incorrect behavior from integral
promotion rules and types larger than those in which arithmetic is
typically performed.
- Added const for variables where possible and meaningful.
* Changed the casts from C to C++ style
Changed the C-style casts to C++ casts as proposed.
Took also care about signed / unsigned behaviour.
This has gotten sufficiently large enough to warrant moving it to its
own source files. Especially given it dumps the file_sys headers around
code that doesn't use it for the most part.
This'll also make it easier to introduce a type alias for the
compatibility list, so a large unordered_map type declaration doesn't
need to be specified all the time (we don't want to propagate the
game_list_p.h include via the main game_list.h header).
Given we now have the kernel as a class, it doesn't make sense to keep
the current process pointer within the System class, as processes are
related to the kernel.
This also gets rid of a subtle case where memory wouldn't be freed on
core shutdown, as the current_process pointer would never be reset,
causing the pointed to contents to continue to live.