Ryujinx/Ryujinx.HLE/Gpu/Engines/NvGpuEngine3d.cs

764 lines
25 KiB
C#
Raw Normal View History

using Ryujinx.Graphics.Gal;
using Ryujinx.HLE.Gpu.Memory;
using Ryujinx.HLE.Gpu.Texture;
using System;
using System.Collections.Generic;
namespace Ryujinx.HLE.Gpu.Engines
{
class NvGpuEngine3d : INvGpuEngine
{
public int[] Registers { get; private set; }
private NvGpu Gpu;
private Dictionary<int, NvGpuMethod> Methods;
private struct ConstBuffer
{
public bool Enabled;
public long Position;
public int Size;
}
private ConstBuffer[][] ConstBuffers;
private HashSet<long> FrameBuffers;
public NvGpuEngine3d(NvGpu Gpu)
{
this.Gpu = Gpu;
Registers = new int[0xe00];
Methods = new Dictionary<int, NvGpuMethod>();
void AddMethod(int Meth, int Count, int Stride, NvGpuMethod Method)
{
while (Count-- > 0)
{
Methods.Add(Meth, Method);
Meth += Stride;
}
}
AddMethod(0x585, 1, 1, VertexEndGl);
AddMethod(0x674, 1, 1, ClearBuffers);
AddMethod(0x6c3, 1, 1, QueryControl);
AddMethod(0x8e4, 16, 1, CbData);
AddMethod(0x904, 5, 8, CbBind);
ConstBuffers = new ConstBuffer[6][];
for (int Index = 0; Index < ConstBuffers.Length; Index++)
{
ConstBuffers[Index] = new ConstBuffer[18];
}
FrameBuffers = new HashSet<long>();
}
public void CallMethod(NvGpuVmm Vmm, NvGpuPBEntry PBEntry)
{
if (Methods.TryGetValue(PBEntry.Method, out NvGpuMethod Method))
{
Method(Vmm, PBEntry);
}
else
{
WriteRegister(PBEntry);
}
}
private void VertexEndGl(NvGpuVmm Vmm, NvGpuPBEntry PBEntry)
{
LockCaches();
SetFrameBuffer(Vmm, 0);
long[] Keys = UploadShaders(Vmm);
Gpu.Renderer.Shader.BindProgram();
//Note: Uncomment SetFrontFace SetCullFace when flipping issues are solved
//SetFrontFace();
//SetCullFace();
SetDepth();
SetStencil();
SetAlphaBlending();
2018-07-08 09:14:35 -07:00
SetPrimitiveRestart();
UploadTextures(Vmm, Keys);
UploadUniforms(Vmm);
UploadVertexArrays(Vmm);
UnlockCaches();
}
private void LockCaches()
{
Gpu.Renderer.Rasterizer.LockCaches();
Gpu.Renderer.Texture.LockCache();
}
private void UnlockCaches()
{
Gpu.Renderer.Rasterizer.UnlockCaches();
Gpu.Renderer.Texture.UnlockCache();
}
private void ClearBuffers(NvGpuVmm Vmm, NvGpuPBEntry PBEntry)
{
int Arg0 = PBEntry.Arguments[0];
int FbIndex = (Arg0 >> 6) & 0xf;
GalClearBufferFlags Flags = (GalClearBufferFlags)(Arg0 & 0x3f);
SetFrameBuffer(Vmm, FbIndex);
Gpu.Renderer.Rasterizer.ClearBuffers(Flags);
}
private void SetFrameBuffer(NvGpuVmm Vmm, int FbIndex)
{
long VA = MakeInt64From2xInt32(NvGpuEngine3dReg.FrameBufferNAddress + FbIndex * 0x10);
long Key = Vmm.GetPhysicalAddress(VA);
FrameBuffers.Add(Key);
int Width = ReadRegister(NvGpuEngine3dReg.FrameBufferNWidth + FbIndex * 0x10);
int Height = ReadRegister(NvGpuEngine3dReg.FrameBufferNHeight + FbIndex * 0x10);
//Note: Using the Width/Height results seems to give incorrect results.
//Maybe the size of all frame buffers is hardcoded to screen size? This seems unlikely.
Gpu.Renderer.FrameBuffer.Create(Key, 1280, 720);
Gpu.Renderer.FrameBuffer.Bind(Key);
}
private long[] UploadShaders(NvGpuVmm Vmm)
{
long[] Keys = new long[5];
long BasePosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress);
int Index = 1;
int VpAControl = ReadRegister(NvGpuEngine3dReg.ShaderNControl);
bool VpAEnable = (VpAControl & 1) != 0;
if (VpAEnable)
{
//Note: The maxwell supports 2 vertex programs, usually
//only VP B is used, but in some cases VP A is also used.
//In this case, it seems to function as an extra vertex
//shader stage.
//The graphics abstraction layer has a special overload for this
//case, which should merge the two shaders into one vertex shader.
int VpAOffset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset);
int VpBOffset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset + 0x10);
long VpAPos = BasePosition + (uint)VpAOffset;
long VpBPos = BasePosition + (uint)VpBOffset;
Gpu.Renderer.Shader.Create(Vmm, VpAPos, VpBPos, GalShaderType.Vertex);
Gpu.Renderer.Shader.Bind(VpBPos);
Index = 2;
}
for (; Index < 6; Index++)
{
int Control = ReadRegister(NvGpuEngine3dReg.ShaderNControl + Index * 0x10);
int Offset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset + Index * 0x10);
//Note: Vertex Program (B) is always enabled.
bool Enable = (Control & 1) != 0 || Index == 1;
if (!Enable)
{
continue;
}
long Key = BasePosition + (uint)Offset;
GalShaderType ShaderType = GetTypeFromProgram(Index);
Keys[(int)ShaderType] = Key;
Gpu.Renderer.Shader.Create(Vmm, Key, ShaderType);
Gpu.Renderer.Shader.Bind(Key);
}
float SignX = GetFlipSign(NvGpuEngine3dReg.ViewportScaleX);
float SignY = GetFlipSign(NvGpuEngine3dReg.ViewportScaleY);
Gpu.Renderer.Shader.SetFlip(SignX, SignY);
return Keys;
}
private static GalShaderType GetTypeFromProgram(int Program)
{
switch (Program)
{
case 0:
case 1: return GalShaderType.Vertex;
case 2: return GalShaderType.TessControl;
case 3: return GalShaderType.TessEvaluation;
case 4: return GalShaderType.Geometry;
case 5: return GalShaderType.Fragment;
}
throw new ArgumentOutOfRangeException(nameof(Program));
}
private void SetFrontFace()
{
float SignX = GetFlipSign(NvGpuEngine3dReg.ViewportScaleX);
float SignY = GetFlipSign(NvGpuEngine3dReg.ViewportScaleY);
GalFrontFace FrontFace = (GalFrontFace)ReadRegister(NvGpuEngine3dReg.FrontFace);
//Flipping breaks facing. Flipping front facing too fixes it
if (SignX != SignY)
{
switch (FrontFace)
{
case GalFrontFace.CW:
FrontFace = GalFrontFace.CCW;
break;
case GalFrontFace.CCW:
FrontFace = GalFrontFace.CW;
break;
}
}
Gpu.Renderer.Rasterizer.SetFrontFace(FrontFace);
}
private void SetCullFace()
{
bool Enable = (ReadRegister(NvGpuEngine3dReg.CullFaceEnable) & 1) != 0;
if (Enable)
{
Gpu.Renderer.Rasterizer.EnableCullFace();
}
else
{
Gpu.Renderer.Rasterizer.DisableCullFace();
}
if (!Enable)
{
return;
}
GalCullFace CullFace = (GalCullFace)ReadRegister(NvGpuEngine3dReg.CullFace);
Gpu.Renderer.Rasterizer.SetCullFace(CullFace);
}
private void SetDepth()
{
float ClearDepth = ReadRegisterFloat(NvGpuEngine3dReg.ClearDepth);
Gpu.Renderer.Rasterizer.SetClearDepth(ClearDepth);
bool Enable = (ReadRegister(NvGpuEngine3dReg.DepthTestEnable) & 1) != 0;
if (Enable)
{
Gpu.Renderer.Rasterizer.EnableDepthTest();
}
else
{
Gpu.Renderer.Rasterizer.DisableDepthTest();
}
if (!Enable)
{
return;
}
GalComparisonOp Func = (GalComparisonOp)ReadRegister(NvGpuEngine3dReg.DepthTestFunction);
Gpu.Renderer.Rasterizer.SetDepthFunction(Func);
}
private void SetStencil()
{
int ClearStencil = ReadRegister(NvGpuEngine3dReg.ClearStencil);
Gpu.Renderer.Rasterizer.SetClearStencil(ClearStencil);
bool Enable = (ReadRegister(NvGpuEngine3dReg.StencilEnable) & 1) != 0;
if (Enable)
{
Gpu.Renderer.Rasterizer.EnableStencilTest();
}
else
{
Gpu.Renderer.Rasterizer.DisableStencilTest();
}
if (!Enable)
{
return;
}
void SetFaceStencil(
bool IsFrontFace,
NvGpuEngine3dReg Func,
NvGpuEngine3dReg FuncRef,
NvGpuEngine3dReg FuncMask,
NvGpuEngine3dReg OpFail,
NvGpuEngine3dReg OpZFail,
NvGpuEngine3dReg OpZPass,
NvGpuEngine3dReg Mask)
{
Gpu.Renderer.Rasterizer.SetStencilFunction(
IsFrontFace,
(GalComparisonOp)ReadRegister(Func),
ReadRegister(FuncRef),
ReadRegister(FuncMask));
Gpu.Renderer.Rasterizer.SetStencilOp(
IsFrontFace,
(GalStencilOp)ReadRegister(OpFail),
(GalStencilOp)ReadRegister(OpZFail),
(GalStencilOp)ReadRegister(OpZPass));
Gpu.Renderer.Rasterizer.SetStencilMask(IsFrontFace, ReadRegister(Mask));
}
SetFaceStencil(false,
NvGpuEngine3dReg.StencilBackFuncFunc,
NvGpuEngine3dReg.StencilBackFuncRef,
NvGpuEngine3dReg.StencilBackFuncMask,
NvGpuEngine3dReg.StencilBackOpFail,
NvGpuEngine3dReg.StencilBackOpZFail,
NvGpuEngine3dReg.StencilBackOpZPass,
NvGpuEngine3dReg.StencilBackMask);
SetFaceStencil(true,
NvGpuEngine3dReg.StencilFrontFuncFunc,
NvGpuEngine3dReg.StencilFrontFuncRef,
NvGpuEngine3dReg.StencilFrontFuncMask,
NvGpuEngine3dReg.StencilFrontOpFail,
NvGpuEngine3dReg.StencilFrontOpZFail,
NvGpuEngine3dReg.StencilFrontOpZPass,
NvGpuEngine3dReg.StencilFrontMask);
}
private void SetAlphaBlending()
{
//TODO: Support independent blend properly.
bool Enable = (ReadRegister(NvGpuEngine3dReg.IBlendNEnable) & 1) != 0;
if (Enable)
{
Gpu.Renderer.Blend.Enable();
}
else
{
Gpu.Renderer.Blend.Disable();
}
if (!Enable)
{
//If blend is not enabled, then the other values have no effect.
//Note that if it is disabled, the register may contain invalid values.
return;
}
bool BlendSeparateAlpha = (ReadRegister(NvGpuEngine3dReg.IBlendNSeparateAlpha) & 1) != 0;
GalBlendEquation EquationRgb = (GalBlendEquation)ReadRegister(NvGpuEngine3dReg.IBlendNEquationRgb);
GalBlendFactor FuncSrcRgb = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncSrcRgb);
GalBlendFactor FuncDstRgb = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncDstRgb);
if (BlendSeparateAlpha)
{
GalBlendEquation EquationAlpha = (GalBlendEquation)ReadRegister(NvGpuEngine3dReg.IBlendNEquationAlpha);
GalBlendFactor FuncSrcAlpha = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncSrcAlpha);
GalBlendFactor FuncDstAlpha = (GalBlendFactor)ReadRegister(NvGpuEngine3dReg.IBlendNFuncDstAlpha);
Gpu.Renderer.Blend.SetSeparate(
EquationRgb,
EquationAlpha,
FuncSrcRgb,
FuncDstRgb,
FuncSrcAlpha,
FuncDstAlpha);
}
else
{
Gpu.Renderer.Blend.Set(EquationRgb, FuncSrcRgb, FuncDstRgb);
}
}
2018-07-08 09:14:35 -07:00
private void SetPrimitiveRestart()
{
bool Enable = (ReadRegister(NvGpuEngine3dReg.PrimRestartEnable) & 1) != 0;
if (Enable)
{
Gpu.Renderer.Rasterizer.EnablePrimitiveRestart();
}
else
{
Gpu.Renderer.Rasterizer.DisablePrimitiveRestart();
}
if (!Enable)
{
return;
}
uint Index = (uint)ReadRegister(NvGpuEngine3dReg.PrimRestartIndex);
Gpu.Renderer.Rasterizer.SetPrimitiveRestartIndex(Index);
}
private void UploadTextures(NvGpuVmm Vmm, long[] Keys)
{
long BaseShPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress);
int TextureCbIndex = ReadRegister(NvGpuEngine3dReg.TextureCbIndex);
//Note: On the emulator renderer, Texture Unit 0 is
//reserved for drawing the frame buffer.
int TexIndex = 1;
for (int Index = 0; Index < Keys.Length; Index++)
{
foreach (ShaderDeclInfo DeclInfo in Gpu.Renderer.Shader.GetTextureUsage(Keys[Index]))
{
long Position = ConstBuffers[Index][TextureCbIndex].Position;
UploadTexture(Vmm, Position, TexIndex, DeclInfo.Index);
Gpu.Renderer.Shader.EnsureTextureBinding(DeclInfo.Name, TexIndex);
TexIndex++;
}
}
}
private void UploadTexture(NvGpuVmm Vmm, long BasePosition, int TexIndex, int HndIndex)
{
long Position = BasePosition + HndIndex * 4;
int TextureHandle = Vmm.ReadInt32(Position);
if (TextureHandle == 0)
{
//TODO: Is this correct?
//Some games like puyo puyo will have 0 handles.
//It may be just normal behaviour or a bug caused by sync issues.
//The game does initialize the value properly after through.
return;
}
int TicIndex = (TextureHandle >> 0) & 0xfffff;
int TscIndex = (TextureHandle >> 20) & 0xfff;
long TicPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.TexHeaderPoolOffset);
long TscPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.TexSamplerPoolOffset);
TicPosition += TicIndex * 0x20;
TscPosition += TscIndex * 0x20;
GalTextureSampler Sampler = TextureFactory.MakeSampler(Gpu, Vmm, TscPosition);
long Key = Vmm.ReadInt64(TicPosition + 4) & 0xffffffffffff;
Key = Vmm.GetPhysicalAddress(Key);
if (IsFrameBufferPosition(Key))
{
//This texture is a frame buffer texture,
//we shouldn't read anything from memory and bind
//the frame buffer texture instead, since we're not
//really writing anything to memory.
Gpu.Renderer.FrameBuffer.BindTexture(Key, TexIndex);
}
else
{
GalTexture NewTexture = TextureFactory.MakeTexture(Vmm, TicPosition);
long Size = (uint)TextureHelper.GetTextureSize(NewTexture);
bool HasCachedTexture = false;
if (Gpu.Renderer.Texture.TryGetCachedTexture(Key, Size, out GalTexture Texture))
{
if (NewTexture.Equals(Texture) && !Vmm.IsRegionModified(Key, Size, NvGpuBufferType.Texture))
{
Gpu.Renderer.Texture.Bind(Key, TexIndex);
HasCachedTexture = true;
}
}
if (!HasCachedTexture)
{
byte[] Data = TextureFactory.GetTextureData(Vmm, TicPosition);
Gpu.Renderer.Texture.Create(Key, Data, NewTexture);
}
Gpu.Renderer.Texture.Bind(Key, TexIndex);
}
Gpu.Renderer.Texture.SetSampler(Sampler);
}
private void UploadUniforms(NvGpuVmm Vmm)
{
long BasePosition = MakeInt64From2xInt32(NvGpuEngine3dReg.ShaderAddress);
for (int Index = 0; Index < 5; Index++)
{
int Control = ReadRegister(NvGpuEngine3dReg.ShaderNControl + (Index + 1) * 0x10);
int Offset = ReadRegister(NvGpuEngine3dReg.ShaderNOffset + (Index + 1) * 0x10);
//Note: Vertex Program (B) is always enabled.
bool Enable = (Control & 1) != 0 || Index == 0;
if (!Enable)
{
continue;
}
for (int Cbuf = 0; Cbuf < ConstBuffers[Index].Length; Cbuf++)
{
ConstBuffer Cb = ConstBuffers[Index][Cbuf];
if (Cb.Enabled)
{
byte[] Data = Vmm.ReadBytes(Cb.Position, (uint)Cb.Size);
Gpu.Renderer.Shader.SetConstBuffer(BasePosition + (uint)Offset, Cbuf, Data);
}
}
}
}
private void UploadVertexArrays(NvGpuVmm Vmm)
{
long IndexPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.IndexArrayAddress);
long IboKey = Vmm.GetPhysicalAddress(IndexPosition);
int IndexEntryFmt = ReadRegister(NvGpuEngine3dReg.IndexArrayFormat);
int IndexFirst = ReadRegister(NvGpuEngine3dReg.IndexBatchFirst);
int IndexCount = ReadRegister(NvGpuEngine3dReg.IndexBatchCount);
GalIndexFormat IndexFormat = (GalIndexFormat)IndexEntryFmt;
int IndexEntrySize = 1 << IndexEntryFmt;
if (IndexEntrySize > 4)
{
throw new InvalidOperationException();
}
if (IndexCount != 0)
{
int IbSize = IndexCount * IndexEntrySize;
bool IboCached = Gpu.Renderer.Rasterizer.IsIboCached(IboKey, (uint)IbSize);
if (!IboCached || Vmm.IsRegionModified(IboKey, (uint)IbSize, NvGpuBufferType.Index))
{
byte[] Data = Vmm.ReadBytes(IndexPosition, (uint)IbSize);
Gpu.Renderer.Rasterizer.CreateIbo(IboKey, Data);
}
Gpu.Renderer.Rasterizer.SetIndexArray(IbSize, IndexFormat);
}
List<GalVertexAttrib>[] Attribs = new List<GalVertexAttrib>[32];
for (int Attr = 0; Attr < 16; Attr++)
{
int Packed = ReadRegister(NvGpuEngine3dReg.VertexAttribNFormat + Attr);
int ArrayIndex = Packed & 0x1f;
if (Attribs[ArrayIndex] == null)
{
Attribs[ArrayIndex] = new List<GalVertexAttrib>();
}
Attribs[ArrayIndex].Add(new GalVertexAttrib(
Attr,
((Packed >> 6) & 0x1) != 0,
(Packed >> 7) & 0x3fff,
(GalVertexAttribSize)((Packed >> 21) & 0x3f),
(GalVertexAttribType)((Packed >> 27) & 0x7),
((Packed >> 31) & 0x1) != 0));
}
int VertexFirst = ReadRegister(NvGpuEngine3dReg.VertexArrayFirst);
int VertexCount = ReadRegister(NvGpuEngine3dReg.VertexArrayCount);
int PrimCtrl = ReadRegister(NvGpuEngine3dReg.VertexBeginGl);
for (int Index = 0; Index < 32; Index++)
{
if (Attribs[Index] == null)
{
continue;
}
int Control = ReadRegister(NvGpuEngine3dReg.VertexArrayNControl + Index * 4);
bool Enable = (Control & 0x1000) != 0;
long VertexPosition = MakeInt64From2xInt32(NvGpuEngine3dReg.VertexArrayNAddress + Index * 4);
long VertexEndPos = MakeInt64From2xInt32(NvGpuEngine3dReg.VertexArrayNEndAddr + Index * 2);
if (!Enable)
{
continue;
}
long VboKey = Vmm.GetPhysicalAddress(VertexPosition);
int Stride = Control & 0xfff;
long VbSize = (VertexEndPos - VertexPosition) + 1;
bool VboCached = Gpu.Renderer.Rasterizer.IsVboCached(VboKey, VbSize);
if (!VboCached || Vmm.IsRegionModified(VboKey, VbSize, NvGpuBufferType.Vertex))
{
byte[] Data = Vmm.ReadBytes(VertexPosition, VbSize);
Gpu.Renderer.Rasterizer.CreateVbo(VboKey, Data);
}
Gpu.Renderer.Rasterizer.SetVertexArray(Stride, VboKey, Attribs[Index].ToArray());
}
GalPrimitiveType PrimType = (GalPrimitiveType)(PrimCtrl & 0xffff);
if (IndexCount != 0)
{
int VertexBase = ReadRegister(NvGpuEngine3dReg.VertexArrayElemBase);
Gpu.Renderer.Rasterizer.DrawElements(IboKey, IndexFirst, VertexBase, PrimType);
}
else
{
Gpu.Renderer.Rasterizer.DrawArrays(VertexFirst, VertexCount, PrimType);
}
}
private void QueryControl(NvGpuVmm Vmm, NvGpuPBEntry PBEntry)
{
long Position = MakeInt64From2xInt32(NvGpuEngine3dReg.QueryAddress);
int Seq = Registers[(int)NvGpuEngine3dReg.QuerySequence];
int Ctrl = Registers[(int)NvGpuEngine3dReg.QueryControl];
int Mode = Ctrl & 3;
if (Mode == 0)
{
//Write mode.
Vmm.WriteInt32(Position, Seq);
}
WriteRegister(PBEntry);
}
private void CbData(NvGpuVmm Vmm, NvGpuPBEntry PBEntry)
{
long Position = MakeInt64From2xInt32(NvGpuEngine3dReg.ConstBufferAddress);
int Offset = ReadRegister(NvGpuEngine3dReg.ConstBufferOffset);
foreach (int Arg in PBEntry.Arguments)
{
Vmm.WriteInt32(Position + Offset, Arg);
Offset += 4;
}
WriteRegister(NvGpuEngine3dReg.ConstBufferOffset, Offset);
}
private void CbBind(NvGpuVmm Vmm, NvGpuPBEntry PBEntry)
{
int Stage = (PBEntry.Method - 0x904) >> 3;
int Index = PBEntry.Arguments[0];
bool Enabled = (Index & 1) != 0;
Index = (Index >> 4) & 0x1f;
long Position = MakeInt64From2xInt32(NvGpuEngine3dReg.ConstBufferAddress);
ConstBuffers[Stage][Index].Position = Position;
ConstBuffers[Stage][Index].Enabled = Enabled;
ConstBuffers[Stage][Index].Size = ReadRegister(NvGpuEngine3dReg.ConstBufferSize);
}
private float GetFlipSign(NvGpuEngine3dReg Reg)
{
return MathF.Sign(ReadRegisterFloat(Reg));
}
private long MakeInt64From2xInt32(NvGpuEngine3dReg Reg)
{
return
(long)Registers[(int)Reg + 0] << 32 |
(uint)Registers[(int)Reg + 1];
}
private void WriteRegister(NvGpuPBEntry PBEntry)
{
int ArgsCount = PBEntry.Arguments.Count;
if (ArgsCount > 0)
{
Registers[PBEntry.Method] = PBEntry.Arguments[ArgsCount - 1];
}
}
private int ReadRegister(NvGpuEngine3dReg Reg)
{
return Registers[(int)Reg];
}
private float ReadRegisterFloat(NvGpuEngine3dReg Reg)
{
return BitConverter.Int32BitsToSingle(ReadRegister(Reg));
}
private void WriteRegister(NvGpuEngine3dReg Reg, int Value)
{
Registers[(int)Reg] = Value;
}
public bool IsFrameBufferPosition(long Position)
{
return FrameBuffers.Contains(Position);
}
}
}